
Linguistic Geometry
From Search to Construction

Boris Stilman
University of Colorado at Denver

&
Stilman Advanced Strategies, LLC

To order this book contact
Kluwer Academic Publishers at

http://www.wkap.nl/series.htm/ORCS

Kluwer Academic Publishers
Boston Dordrecht London

Copyright © 1999 by Boris Stilman. All rights reserved.
No part of this publication may be reproduced, stored in a
database retrieval system, distributed, or transmitted, in any
form or by any other means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of Boris Stilman.

PREFACE

This book is neither about linguistics nor geometry. It is about search
problems. Linguistic Geometry (LG) is an approach to construction of
mathematical models for knowledge representation and reasoning about
large-scale multiagent systems. A number of such systems (formally defined
here as Complex Systems), including air/space combat, robotic
manufacturing, software re-engineering, Internet cyberwar, etc. can be
modeled as abstract board games. These are multi-player games whose
moves can be represented by means of moving abstract pieces over
locations on an abstract board. The dimensions of the board (2D, nD, and
even non-linear space), its shape and size, the mobility of pieces, the turn of
moves (including concurrent moves) – all can be tailored to model a variety of
multiagent systems. Thus abstract board games are understood here as a
class of Complex Systems. The purpose of LG is to provide strategies to
guide the participants of a game to reach their goals. Traditionally, finding
such strategies required searches in giant game trees. Such searches are
often beyond capabilities of modern and even conceivable future
computers.

LG dramatically reduces the size of the search trees, thus making the
problems computationally tractable. LG provides a formalization and
abstraction of search heuristics of advanced experts. Essentially, these
heuristics replace search by construction of strategies. The formalized expert
strategies yield efficient algorithms for problem settings whose dimensions
may be significantly greater than the ones for which the experts developed
their strategies. Moreover, these formal strategies allowed to solve problems
from different problem domains far beyond the areas envisioned by the
experts. It is really fascinating that for certain classes of problems these
expert strategies yield provably optimal solutions. To formalize the heuristics,
LG employs the theory of formal languages (i.e., formal linguistics), as well as
certain geometric structures over the abstract board. Since both, the
linguistics and the geometry, were involved, this approach was named
Linguistic Geometry.

ii Preface

This is the first book on the subject. It is not my intention to present a
complete theory of LG, because such a theory is yet to be completed.
However, the book includes foundations of such theory.

LG already has a long and enlightening history. Chess, a Drosophila of
Artificial Intelligence, contributed in a major way to the origin of LG. It
continues to be an everlasting source of ideas and a driving force behind its
development. Having started with computer experiments in 1972, continued
with theoretical insights in the 80s, and formally established in 1991, LG has
moved in many directions. Some of them are based on rigorous foundations,
others – on sophisticated experiments. The purpose of this book is to
introduce the reader to a multiplicity of approaches, ideas, and experiments.
Every chapter is written as an essay on one topic in LG, theoretical or
experimental, though all chapters are linked together and support each
other.

Chapter 1 includes introduction to the subject and a brief research
background. Chapter 2 includes basic definitions and a survey of the LG
formal tools, a hierarchy of formal languages. Chapters 3 through 7 cover a
number of experiments with LG tools. They demonstrate how the LG
algorithms solve problems of gradually increasing complexity. Besides
interesting actual results, a detailed description of experiments is intended to
develop an intuitive understanding of LG algorithms and their underlying
structure. Armed with this intuition, a reader will be able to digest a formal
description of LG tools in Chapters 8-12. Chapter 13 gives a new, much
deeper account in the foundations of LG. By redeveloping the experiment
from Chapter 3, it points a new direction in LG: solving search problems by
construction of strategies (without any tree-based search). In Chapter 14 we
discuss some issues of computational complexity. The book suggests that
LG tools allow us to identify a wide subclass of tractable (polynomial)
problems among those that are usually considered as intractable
(exponential). The LG algorithms provide their solutions.

This book can be used as a textbook for a graduate or senior
undergraduate course on LG for one or two semesters or a supplement to a
course on AI. Some of this material was taught in the courses Knowledge
Representation for Intelligent Systems and Complex Intelligent Systems at
the University of Colorado at Denver. Also, many topics included in the book
were presented as tutorials and short courses on LG around the world.

I hope that the reader will share my excitement with the subject and join
the army of researchers and practitioners that develop the theory and
applications of LG. The book is not going to be an untouchable sacred
source of information on LG for decades to come. My intention is to move the
frontier, elicit interest, ignite research and development, to bring this book
out of date, and write a new book that will further revolutionize our
understanding of the subject.

Boris Stilman,
Denver, Colorado, USA

ACKNOWLEDGMENTS

It would have been impossible for me to write this book about Linguistic
Geometry if it was not based on almost three decades of research. This
research would have never advanced to the current level without major
support of my adviser, colleagues and scientists from around the world,
funding agencies, and computing centers.

This book was inspired by the results of long and fruitful collaboration in
the 70s and 80s with Professor Mikhail Botvinnik, my research adviser and
project director. At the very beginning he shaped my thinking about complex
search problems. One scientist said that this unimaginably difficult work could
have started because Botvinnik, a chess player, did not anticipate the
difficulties of programming, while Stilman, a computer scientist, did not
anticipate difficulties of playing chess. Every time when the team of
researchers experienced serious problems in the development of the project
PIONEER, Dr. Botvinnik used to say: “If a human chess master can make it, a
computer will make it as well.” He believed in the existence of a general
algorithm, or a small collection of general algorithms, used intuitively by all the
chess masters and grandmasters in playing chess. Essentially, discovery,
simulation and generalization of these algorithms were the goals of the
project PIONEER. An attempt to construct and investigate a mathematical
model based on those algorithms is the goal of this book.

Alexander Yudin, Alexander Reznitskiy, Mikhail Tsfasman, Mikhail
Chudakov have worked with me in the 70s and 80s to develop project
PIONEER. My friend and colleague, Vadim Mirniy, with whom we worked in
the 80s provided major insights and pushed our research and software
implementations to much higher level. Also, in the 70s an invaluable
technical assistance in software development was provided by Dmitry
Lozinskiy, Lidia Poltavets, and Anatoliy Kostrukov.

Four major scientists, the founders of computer science and engineering
in the former Soviet Union, Academician Viktor Glushkov, Professors Bashir
Rameev, Viacheslav Myasnikov and Nikolay Krinitskiy contributed to the
establishment of the organizational framework, provided major funding and
access to the state-of-the-art computers for project PIONEER.

iv Linguistic Geometry:

Project PIONEER and the first theoretical generalizations related to the
origin of LG would have never succeeded without constant support of
numerous Soviet scientists. I am grateful to all of them. Here, I would like to
acknowledge those whose decisive support came at the most difficult times.
They are Academician Nikolay Krasovsky, Academician-correspondent,
Lenin Prize Winner Yakov Tsipkin, Academician-correspondents Yury
Rudenko and Hermogen Pospelov, Professors Dmitry Pospelov, David
Yudin, Vladimir Yakubovich, Georgiy Adelson-Velsky, Yuriy Shakarian, Gavriil
Shalit, Lev Mamikoniants, and Dr. Mikhail Donskoy.

Scientific exchange with researchers from around the world allowed our
team to overcome isolation of the former Soviet Union. A list of major
participants of this exchange includes Professor Monty Newborn from McGill
University, Canada, Professors Tony Marsland and Randy Goebel from the
University of Alberta, Canada, Professor Jaap van den Herik from the
University of Limburg, The Netherlands, Professor Ben Mittman from
Northwestern University, USA, Dr. David Cahlander from CDC Corp., USA,
Ken Thompson from Bell Labs, USA, Dr. Hans Meuer from the University of
Mannheim, Germany, Dr. H.-J. Appelrath from the University of Dortmund,
Germany, David Levy from London, UK.

I have a special debt to Professor Newborn who invited me to do research
at McGill University in 1990. I am certain that without this invitation I would not
have been able to continue research in LG.

In 1992, Professor Ervin Rodin from Washington University, St. Louis,
MS, showed interest in further development and expansion of LG. As an
editor-in-chief of the international journal Computers and Mathematics with
Applications he wrote (Rodin, 1992) “... I would be very interested in
publishing these types of works of yours (in LG - B.S.).” Some of the major
results presented in this book were first published in this journal. Professor
Rodin’s Center for Optimization and Semantic Control at Washington
University contributed to the success of the First Symposium on LG and
Semantic Control in 1995. In 1994, with respect to applying LG to combat
simulation and control, he wrote: “I am familiar with Professor Stilman’s work
on Linguistic Geometry and I believe that it may be a most worthwhile tool to
attack the above-named subject (intelligent battlefield planning and control -
B.S.)” (Rodin, 1994).

In 1993, Dr. Raymond Lauzzana, an editor-in-chief of the international
journal Languages of Design demonstrated interest in broadening the scope
of the LG audience. He put a significant personal effort, guidance, and
encouragement in my revising of the paper on LG for his journal to make it
available for a multidisciplinary audience. He wrote: “... I would like to say that
Dr. Stilman has an exciting and refreshing interdisciplinary attitude about his
research. He has been able to expand his research in modeling two-player
games into a general model for hierarchical systems. This greatly expanded
the applicability of his work ... I personally appreciate the rigor with which he
has approached the subject. I am sure that his work will have a substantial
influence in the future.” (Lauzzana, 1993).

Jim Rash, a scientist from NASA Goddard Space Flight Center, Greenbelt,
MD, provided support, impetus and encouragement for further development
of LG. As a guest editor of the special issue of the international journal

Acknowledgments v

Telematics and Informatics (with the best papers of the 1994 Goddard
Conference on Space Applications of AI), he referred to my paper Heuristic
Networks for Space Exploration (Rash, 1994), “... as an example of a
particularly enticing application of AI ... This paper presents linguistic
geometry as an efficient method for searching large solution spaces with
respect to classes of problems that are known to be especially difficult, and
applies the method to the problem of autonomous robot navigation
planning.”

I am grateful to Professor Alex Meystel from Drexel University, for his
constructive interest in LG and continious support. As an editor-in-chief of
Wiley Series in Intelligent Systems he not only encouraged me to complete
this book at the very beginning of this work but already urged me to write
another book on LG, maybe with different emphasis. Professor Meystel
(1998) wrote: “... I would expect that multiple new results of LG will be
incorporated by Knowledge Engineering in AI. Any further advancement in
this area is unthinkable without taking advantage of the conceptual systems
like Linguistic Geometry.”

A skeleton of the book was implicitly influenced by Professor Norman Foo
from the University of New South Wales, Sidney, Australia (1996), who wrote:
“There cannot be any panaceas for search techniques as it is provable that
the worst case is exponentially hard or worse. So, for any given idea, there
will be classes of problems that will defeat it. However, it is entirely possible
that large subclasses of problems that have good descriptions are
susceptible to efficient attack. This is where Boris’ ideas in linguistic geometry
come into their own. He has essentially found an interesting and useful
subclass for which his ideas and representation promise efficient solutions.
This is a significant contribution to the area.”

When the work on this book was almost completed, I learned about the
following statements by Professor John McCarthy from Stanford University,
(1998). In his comments about solving R. Reti chess endgame by computers
he wrote: “Note that Reti’s idea can be implemented on a 100×100 board,
and humans will still solve the problem, but present (conventional, i.e., brute
force - B.S.) programs will not Chess can serve as a Drosofila for AI if AI
researchers try to make a program that (will) come up with the idea needed to
solve the problem on a board of arbitrary size. Conversely, AI will not advance
to human level if AI researchers remain satisfied with brute force as a
substitute for intelligence ... Would anyone seriously argue that it is
impossible for a computer to solve the Reti problem by other than brute
force?” Of course, LG was developed independently and over a long period
of time. However, it is fascinating that this research was driven by similar
ideas.

LG benefited greatly from the unique expertise of two scientists, my
friends Dr. Vlad Yakhnis from Rockwell Science Center, CA and Dr. Alex
Yakhnis from Pioneer Technologies, TX. They made significant contributions
to the construction of winning strategies for two player games with perfect
information. Their work influenced the definition of abstract board games
employed by LG. I extend my special thanks to Dr. Vlad Yakhnis who
contributed greatly to the re-development of the foundations of LG. I would

vi Linguistic Geometry:

like to express my sincere appreciation of Dr. Alex Yakhnis’ review of the draft
of this book and his constructive comments.

I thank my student David Knox for reading the draft of this book, for his
invaluable comments, and for saying that this book is ... certainly readable.

I use this opportunity to thank my friend Professor Tom Altman from the
University of Colorado at Denver whose inspirational ideas and practical
advice helped me significantly advance the theory and applications of LG. It is
very important to have a friend you can rely on in the most difficult situations
in research and beyond.

I am grateful to my son Michael, currently a freshman at Stanford, who
contributed to the development of LG for the agents with variable speed and
designed an amazing cover for this book.

Another person whom I would like to distinguish is Gary Folven, my
publisher. His enthusiasm about this book and unimaginable patience
helped me to successfully complete this work.

In this brief survey it is impossible to acknowledge all the contributions. I
would like to express my gratefulness to numerous researchers,
practitioners, and students whose interest and efforts helped to clarify and
advance various aspects of LG.

While in the USSR, this research was supported by the grants from the
State Committee for Science and Technology (GKNT) and from the
Department of Energy and Power Production (MinEnergo). An access to the
most advanced computers was provided by the Computing Center of the
State Planning Committee (GVC Gosplana), the Computing Center for
Information on Science and Technology (VNTIC), and the Computing Center
for Health Maintenance of the Government of Moscow (VCKP
“Zdravoohranenie”). For many years a friendly, supportive environment of
the National Research Institute for Electrical Engineering (VNIIE) assisted me
in the development of LG.

While in Canada and in the USA, this research at various stages was
supported by the National Sciences and Engineering Research Council
(NSERC) of Canada and McGill University, by the U.S. Air Force Office of
Scientific Research (AFOSR) via Summer Faculty Fellowship at the Air Force
Phillips Laboratory, by the grant from the Department of Energy through
Sandia National Laboratories, and by the University of Colorado at Denver
Faculty Research Fellowship.

Currently, this research is supported by a substantial grant from the
Defense Advanced Research Projects Agency (DARPA).

TABLE OF CONTENTS

1 Introduction 1

1.1 Problems 2
1.2 Current Approaches 4
1.3 LG Approach at a Glance 9
1.4 LG Approach: Deeper Account 13
1.5 LG Strategies and Game Theory 19
1.6 LG: Three Stages of Development 22
1.7 Stage One: Project PIONEER 24
1.8 Stage Two: Mathematical Tools 28
1.9 Stage Three: Modern History 32

2 Hierarchy of Formal Languages 39

2.1 Hierarchy Outline 39
2.2 Class of Problems 40
2.3 Various Problems as Complex Systems 45
2.4 Set of Paths: Language of Trajectories 50
2.5 Board and State Distances 52
2.6 Networks of Paths: Languages of Networks 54
2.7 Representation of Movement: Translations 66
2.8 Search by Construction: Languages of Searches 71
2.9 Historical Remarks 75

3 Robot Combat for 2D District 77

3.1 Problem Statement 77
3.2 LG Search 79
3.3 Discussion 88
3.4 Historical Remarks 89

viii Linguistic Geometry:

4 Expanding to 3D Space 91

4.1 3D/4A Robot Combat 91
4.2 LG Search within Insufficient Horizon 94
4.3 LG Search within Horizon 5 98
4.4 From 2D to 3D: Running Time Change 105
4.5 Historical Remarks 106

5 Deeper Search, More Agents 107

5.1 2D/8A Air Combat 107
5.2 Deep Search for Air Combat 112
5.3 3D/8A Space Combat 128
5.4 A New Level of Sophistication: Preliminary Conclusions 131
5.5 Historical Remarks 134

6 Concurrency, n n District 137

6.1 Serial Mode Relaxation: Partial Concurrency 137
6.2 LG Search for Problem with Partial Concurrency 139
6.3 Second Problem with Partial Concurrency 143
6.4 Second Problem: LG Search 145
6.5 Problem with Total Concurrency and n×n District 150
6.6 Problem with Total Concurrency: LG Search 153
6.7 Impact of Concurrency 160
6.8 Historical Remarks 162

7 Scheduling: Artificial Conflict 165

7.1 Problem Statement 165
7.2 Conversion into Two-Player Game 168
7.3 Scheduling: Search and Solution 172
7.4 Formal Representation 174
7.5 Evaluation and Implementation 177
7.6 Applicability of LG 178

8 Generating Techniques 181

8.1 Chomsky Grammars 181
8.2 Controlled Grammars: Introduction 183
8.3 Tower of Hanoi: 3 Discs 184
8.4 Tower of Hanoi: n Discs 186
8.5 Controlled Grammars: Formal Definition 188
8.6 Historical Remarks 191

9 Language of Trajectories 193

9.1 Shortest Trajectories: Generating Grammar 193
9.2 Generation of Shortest 2D Trajectories 196
9.3 Generation of Shortest 3D Trajectories 200

Table of Contents ix

9.4 Shortest Trajectories: Correctness and Completeness 204
9.5 Admissible Trajectories: Generating Grammar 207
9.6 Avoiding Obstacles: Generation of Admissible Trajectories 210
9.7 Admissible Trajectories: Correctness and Completeness 215
9.8 Trajectories for the Game of Chess 219
9.9 Trajectories for Scheduling 224
9.10 Trajectories for Agents with Variable Speed 226
9.11 Language of Trajectories: Efficient Implementation 232
9.12 Historical Remarks 233

10 Language of Zones 235

10.1 Grammar of Zones 235
10.2 Generation of Zones 238
10.3 Geometry of Zones 250
10.4 Zones for the Game of Chess 253
10.5 Zones for Scheduling 254
10.6 Historical Remarks 256

11 Translations 259

11.1 Approaching a Solution of the Problem of Change 259
11.2 Theorem about Translations 265
11.3 Search with Translations 278
11.4 Translations and Freeze 284
11.5 Historical Remarks 286

12 Languages of Searches 287

12.1 General Searches 287
12.2 Reduced Searches 290
12.3 Grammar of Translations 294
12.4 Quality of Trajectories and Zones 297
12.5 Tree Inspection Procedure 300
12.6 Historical Remarks 303

13 From Search to Construction 305

13.1 Problem Statement 305
13.2 Algorithm Outline 306
13.3 Preliminary Definitions 307
13.4 Terminal Sets Expansion 308
13.5 Structure of Expanded Terminal Sets 311
13.6 State Space Chart 319
13.7 Outline of Potential Strategies 323
13.8 Construction of Strategy at the Start State 330
13.9 Strategies for Reti-like Problems 335
13.10 Discussion 337
13.11 Historical Remarks 339

x Linguistic Geometry:

14 Computational Complexity 341

14.1 Running Time:
Conventional Algorithms for Reti-like problems 341

14.2 Running Time: Grammar of Shortest Trajectories 347
14.3 Running Time: Grammar of Zones 350
14.4 Running Time:

Unfolding Bundles of Trajectories and Cloning Zones 353
14.5 Computational Complexity: Reti-like Problems 357
14.6 Historical Remarks 359

Future Challenges 361

References 363

Index 377

1 INTRODUCTION

Linguistic Geometry includes the syntactic tools for knowledge
representation and reasoning about multiagent systems by modeling them
as abstract board games. The LG tools provide a basis for the evaluation
of computational complexity and accuracy of solutions, and for
generating computer programs for specific problem domains. LG allows us
to discover the inner properties of human expert heuristics that are
successful in a certain class of games. This approach provides us with an
opportunity to transfer formal properties and constructions from one
problem to another and to reuse tools in the new problem domain. In a
sense, it is the application of the method of a chess expert to robot
control or maintenance scheduling and vice versa.

What do we know about the methods of a chess expert? Of course, a
computer is the perfect tool for discovery and modeling of such methods.
The history of computer chess began with a paper by Professor Claude
Shannon (1950) in which he introduced the framework that guided further
development. Employing mostly the brute force search, relying
ultimately on computer speed, computer chess programs gradually
increased their level of playing (Newborn, 1996). In the middle of the
90s, they reached the level of a grandmaster. After the May 1997
historical event, when the Deep Blue computer chess system defeated
World Chess Champion Gary Kasparov, computer chess lost its exciting
attractiveness. In June of 1997, Professor John McCarthy (1997) wrote:
“In 1965 the Russian mathematician Alexander Kronrod said, “Chess is
the Drosophila of Artificial Intelligence.” However, computer chess has
developed much as genetics might have if the geneticists had
concentrated their efforts starting in 1910 on breeding racing Drosophila.
We would have some science, but mainly we would have very fast fruit
flies.”

2 Chapter 1

All the major advances in computer chess, including the Deep Blue
triumph, were related to the brute force approach. What can we learn
from these advances for different problems, particularly, for the problems
of much higher dimension? Not much. Even in the future, we will not be
able to solve these problems employing brute force. The grandmaster’s
approach (of almost no search) has not been discovered yet. After the
1997 event, it is more important than ever before, that chess stays as a
scientific Drosophila of AI and not just a racer (McCarthy, 1990, 1997).

Not all the research in computer chess went in the direction of the
brute force. In the 70s and 80s project PIONEER led by the Former
World Chess Champion, Professor Mikhail Botvinnik was developed in
Moscow, Russia. In his book (1984) Botvinnik writes that the brute force
method is “hardly capable of further progress. It is the computer’s turn to
adopt a more fruitful method - perhaps PIONEER. And if PIONEER is
unsuccessful, we must believe that other method will be found. The
problem must and will be solved.”

LG is the direct successor of the project PIONEER. The Drosophila of
AI “flies through this book fertilizing various experiments and generating
new ideas.”

Among other examples in this book we consider a series of combat
simulation problems. These are “Reti-like” problems, i.e., the
generalizations of the R. Reti endgame (c.f. Botvinnik, 1984). Here they
are called 2D/4A, 3D/4A, partially and totally concurrent combat
simulations. These problems are simple enough to be used as
demonstrations of the LG approach. On the other hand, they are not
trivial and require significant search to be solved employing conventional
approaches. It is the general understanding that they are PSPACE-
complete or at least NP-hard and no known polynomial-time algorithms
exist to solve them (Garey and Johnson, 1991).

LG tools allow us to solve subclasses of these and many other problems
employing algorithms of polynomial complexity. It can be suggested that
the Reti-like problems are representative of a wider class of problems of
low (polynomial) computational complexity. This would be a new
subclass in the class of P problems. It is likely that many important real
world problems considered below are members of this subclass.

1.1 Problems

Advanced technologies are required for simulation of various concurrent
multiagent systems such as land combat operations, aircraft combat
missions, tracking and possible interception of missiles and satellites,
surveillance operations, etc. Unmanned aircraft or tanks may participate
in reconnaissance missions or in the full scale combat operation. Similar

Introduction 3

teams of intelligent vehicles may be dispatched by the adversary. Control
of those actions requires permanent adaptation to the intermediate results
and dynamic re-computation in real time.

One example is the problem of real time control of the air combat in
which a number of planes (manned or unmanned) equipped with
countermeasures evade a number of pursuers equipped with missiles.
Another example is the problem of optimal control of unmanned aerial
vehicles (UAVs) that are in the reconnaissance flight to locate mobile
missile launchers. The actual launch points are usually detected by
satellite-based sensors. The UAVs use detected launch points to initiate
their search, locate and possibly destroy them. In the real world scenario,
the UAV control should be considered together with the air combat when
UAVs evade a pursuing enemy aircraft and, on their turn, pursue
adversarial mobile launchers. Similar problems of the development and
real time replanning of the combat scenarios are essential for the navy
and army battlefields.

Conventional models of combats can achieve computational and,
sometimes, analytical solutions for the simple cases. Real world cases
employing those approaches are, however, computationally intractable.

Space combat simulation problems are, in general, similar to the other
combat simulations. However, the astrodynamics of the spacecraft makes
these problems significantly more complex. Another factor is the
vehicle’s autonomy. While the autonomy of the land, navy, and aerial
vehicles is highly desirable, it is essential for the spacecraft, especially, if
they are far away from Earth. Simulation and control of the two-three
spacecraft combat requires enormous amounts of computations. Problems
with greater number of vehicles are computationally intractable (Shinar,
1990; Garcia-Ortiz, et al., 1993).

Another class of problems is related to intelligent manufacturing in
industrial environment. Groups of robots move around the plant, collect
assembly parts, deliver them to the assembly line, and assemble the
product. Because of the localized control, robots collaborate only within
their groups. Various groups compete with each other for common
resources including parts, movement paths, assembly queue, etc. Planning
of these activities requires an enormous amount of computation
employing conventional approaches.

Problems of software re-engineering require conversion of unstructured
programs into the object-oriented software where, sometimes, the end
product of such conversion must be provably correct. This conversion is
intended to transform original unstructured, the so-called legacy software,
into a product which must be maintainable. This class of problems can be
reduced to the problems of graph transformation where the original graph
represents the software to be converted. Typically, this is done
employing graph-rewriting systems. While small-scale software is

4 Chapter 1

convertible, an attempt to scale up to the real world software poses a
tremendous computational challenge.

Problems of network security, integrity, and problems of the Internet
cyberwar have recently attracted significant attention. The question is
how to protect the national computer network from an attack of billions
of computer viruses and worms? Which nodes and even branches should
be cut off (sacrificed), which should be revitalized by activation of
duplicates, what countermeasures should be engaged? A conventional
response to this threat is by local protection. It appears that the amount
of computation required to generate a strategy for global protection
makes this problem intractable.

Scheduling problems with resource allocation are ubiquitous. They
include scheduling jobs in industrial environment by selecting them from
the queue of demands and by delivering resources to job location. Usually,
not all the demanded jobs can be scheduled because of the shortage of
resources while the number of demands can exceed thousands. How to
schedule the most important jobs in order to obtain the best schedule?
One of such problems is scheduling of maintenance of power units in a
number of power plants. Each maintenance requires the unit to be shut
down and, consequently, to compensate the loss of power by the power
reserve from other power plants. These problems are known to be, in
general, computationally intractable (Garey and Johnson, 1991).

Programming the game of chess is not necessarily practical but
certainly a challenging problem. It is most attractive because, in contrast
with many others, true human experts like grandmasters and world
champions do exist. Some of them are capable of the analysis by
introspection and by comparison with the computer game models. This
gives us a chance of successful discovery and formalization of their
approach, and the possible transfer to different problem domains.

1.2 Current Approaches

Problems of long and short-range mission planning, especially for
autonomous navigation, aerospace robot control, such as UAV, aerospace
combat operations control, global and local reconnaissance, etc., are
usually described mathematically in the form of pursuit-evasion
differential games. The classic approach based on the conventional
theory of differential games (Isaacs, 1965) is insufficient, especially in
case of dynamic, multiagent models (Lirov, Rodin et. al., 1988; Garcia-
Ortiz et al., 1993). It is well known that there exists a small number of
differential games for which exact analytical solutions are available.
There are a few more for which numerical solutions can be computed in a
reasonable amount of time, under rather restrictive conditions. However,
each of these games must be one-to-one, which is very far from the real

Introduction 5

world combat scenarios. They are also of the “zero-sum type” which does
not allow a new agent to join the game or some of the agents of both
sides to be disengaged. Other difficulties arise from the requirements of
the 3D modeling, limitation of the lifetime of the agents, or simultaneous
participation of the heterogeneous agents such as on-surface, undersea,
and aerospace vehicles.

Following (Rodin et al., 1987, 1988; Rodin, 1988, Shinar, 1990),
discrete-event modeling of complex control systems can be implemented.
These techniques can be based on generating geometrically meaningful
states. By discretizing time, a finite game tree can be obtained. The nodes
of the tree represent the states of the game, where the players can select
their controls for a given time increment. It is also possible to distinguish
the respective moves of the adversarial sides (including simultaneous
actions). Thus, the branches of the tree are the moves in the game space,
and these problems can be viewed as planning problems in AI. The main
difficulty is the combinatorial explosion of the search tree. According to
(Lirov, Rodin et al., 1988) “... In the case of the two-plane game, the
problem of model choice is not too great, so an exhaustive search for the
best model can be performed in a reasonable amount of time. However,
the search problem becomes a primary concern when several planes are
participating in the game or, in a more complicated example, some other
objects are introduced, such as obstacles at some future times.”

How do we handle this combinatorial explosion? Can we reduce an
average number of alternatives considered in each position (state),
ultimately, to one alternative? This would be an ideal algorithm, one that
is able to find a solution without any tree-based search.

The branching factor B is a parameter representing the average
breadth of the search tree. It shows how many moves (on the average)
should be included in this tree at each node. For example, in the game of
chess applying the brute force search algorithm, we have to include all the
legal moves (permitted in every position according to chess rules). This
means that we have to generate a search tree of the size T which can be
calculated following (1.2.1). In this equation, B is the average number of
moves in each position, L is the depth of the search (assuming all the
branches are terminated at the depth L), and T is the total number of
positions generated. The computation of B is based on the consideration
of a hypothetical search tree with the depth of all branches equal to L,
total number of moves equal to T , and a constant number of successors of
each node.

By definition (Nilsson, 1980; Rich and Knight, 1991), this constant
number is equal to the branching factor B and is determined as a solution
of the equation (1.2.1) for given L and T relative to B. Greater values of
B correspond to a non-selective search; obviously they indicate an
exponential growth of the search with a big base. Algorithms that reduce

6 Chapter 1

B, especially those algorithms which make B close to 1, should be
considered as extremely goal-driven with minimal branching to different
directions.

Employing (1.2.1) for the total number of moves T actually generated
during the search and the value L of the required depth of the search, we
can calculate the branching factor B for an arbitrary search algorithm. It
can be found as an approximate solution of the equation (1.2.2) with
respect to B. This is a non-linear equation and, usually, it is being solved
by various methods including the trial and error approach.

B + B2 + ...+ BL = T (1.2.1)

or
BL+1 – 1
 = T. (1.2.2)

B – 1

Various search algorithms, such as dynamic programming and branch-
and-bound algorithms, were constructed in order to reduce the branching
factor. For the two-player opposing games, such as the game of chess, the
most popular algorithms are various search algorithms with formal alpha-
beta pruning (Nilsson, 1980; Rich, Knight, 1991). They are implemented
in the most powerful computer chess programs, e.g., in all the programs
which are current and former World Computer Chess Champions. It was
proved that in the best case the alpha-beta search algorithm can reduce
the number of terminal nodes to be visited as follows (Slagle and Dixon,
1969, Knuth and Moore, 1975):

2BL/2 – 1 if L is even,
B(L+1)/2 + B(L-1)/2 – 1 if L is odd.

This number of nodes has to be searched in any case, even with perfect
move-ordering procedure. All the various modifications of the alpha-beta
search can do no better than this best case (Kaindl, 1990). However, the
tree still grows exponentially, albeit with a reduced exponent. The perfect
ordering can theoretically double the search depth (during the same time
frame) employing the reduced branching factor ~ √B. Through this book
we use √B as a value of the reduced branching factor in our comparison of
the alpha-beta best case results with the results obtained employing the
LG tools.

Assume that an arbitrary chess position, on average, contains about 40
legal moves, then alpha-beta pruning can reduce this number to
approximately 6. Still, we have an exponential growth with a very high
base B (high branching factor). As a result, chess problems that require a
deep search, for example, to the depth of 20 or more moves, need
enormous amounts of processing time to be solved. Even the Deep Blue
hardware-software system cannot make this leap (Hsu et al, 1990,

Introduction 7

Newborn, 1996, 1997). This massively parallel system of special-purpose
chess chips with a processing speed of two hundred million positions per
second falls short in an attempt to overcome the exponential growth that
comes with a high branching factor. In real world problems the number of
alternatives is far greater than 40, while required depth sometimes
exceeds hundreds of moves. Even future super-computers will not be able
to handle this amount of computations employing conventional search
procedures.

One of the basic approaches is to decrease the dimension of the
complex system following the approach of a human expert in the field,
by breaking the system into smaller subsystems. This process of
decomposition can be applied recursively until we end up with a collection
of basic subproblems that can be treated (in a sense) independently. This
can be viewed as planning in presence of subgoals, macro-operators, and
abstraction (Korf, 1987; Tate, Hendler, and Drummond, 1990). At each
level of decomposition we can apply an abstraction by initially ignoring
the low-level details and concentrating on the essential features of the
problem, addressing the details later. To a certain degree, human experts
usually establish subgoals (and reach them) because they know what
sequence of operators (macro-operator) to apply to reach the next
subgoal. The idea of abstraction in human problem-solving was pointed
out in (Polya, 1945), later, it was used in the planning version of GPS
(Newell, Simon, 1972). Since then, similar ideas have been developed in
many systems within formal theories of linear and nonlinear planning
(e.g., Sacerdoti, 1974, 1975, Stefik, 1981; Chapman, 1987; Knoblock,
1990; Georgeff, 1990; McAllester and Rosenblitt, 1991) or within
different approaches (Mesarovich and Takahara, 1989; Albus, 1991).

Real world complex systems usually involve dynamic processes beyond
the control of a single agent. The problem solver should reason about
actions that the agent has no control over and that may or may not
occur concurrently with what the agent is doing. A number of theories of
planning for multiagent domains have been developed in (Allen, 1984;
Georgeff, 1983, 1990; McDermott, 1985; Pelavin and Allen, 1986). In
particular, an event type can be considered as a set of state sequences,
representing all possible occurrences of the event in all possible
situations, which might include concurrent actions of multiple agents.
One of the possible approaches is to approximate concurrent activity by
using an interleaving approximation (Georgeff, 1983; Pednault, 1987).
We use the same approximation in our first examples (Chapters 3, 4, 5,
and 6). Of course, it is not possible to model simultaneous events within
this approach, and we introduced true concurrency to handle that
(Stilman, 1995d, 1997a, Skhisov and Stilman, 1997, 1998a, 1998b, and
Chapter 6).

Besides a number of specific problems, including inherent the ambiguity
of decision making for an agent due to immediate simultaneous actions of

8 Chapter 1

other agents, the major problem of one-agent planning remains and even
amplifies dramatically for multiple agents. This is the problem of
combinatorial explosion of the search space. Introducing concurrency by
allowing moves with all the simultaneous combinations of actions results
in a tremendous growth of the branching factor, and, consequently, in the
growth of the search space (Chapters 6, 13, and 14).

None of the conventional approaches to the problems considered in
Section 1.1 allows us to scale up to the real world concurrent systems with
respect to the number of agents, dynamic change of their capabilities,
size, shape, and dimension of the operational district, concurrent actions,
real time requirements, etc. One of the main difficulties is the enormous
complexity of computations due to the exponential growth of the
number of variants of the system’s operation to be analyzed. Fortunately,
there are many such problems where the human expert skills in reasoning
about complex multiagent systems are incomparably higher than the level
of modern computing systems with respect to complexity reduction.
Though there is no grandmaster in combat simulation or robot control, in
the game of chess, the human grandmasters have achieved amazing results
in search reduction. Our goal is to study human expert reasoning in the
areas where the results are successful, in order to discover the keys to
their success, and then apply and adopt these keys to the new, as yet,
unsolved problems.

As we discussed above, one of the main search heuristics of a human
expert is related to the decomposition of the system into subsystems.
This decomposition has been implemented for many classes of problems
with varying degrees of success. Implementations based on the formal
theories of linear and nonlinear planning encounter efficiency problems.
An efficient planner requires an intensive use of heuristic knowledge. On
the other hand, a pure heuristic implementation can hardly be reproduced
for other problem domains. Each new problem should be carefully studied
and previous experience usually cannot be applied. Is there a general
constructive approach to such implementations? What are the formal
properties of expert’s heuristics which drove us to a successful hierarchy
of subsystems for a given problem? How can we apply the same ideas for
a different problem domain?

We need formal language tools for an adequate representation of
expert skills. An application of such tools to the area of successful results
achieved by the human expert should yield a formal, domain-independent
knowledge ready to be transferred to different areas. Neither natural nor
programming languages satisfy our goal. The first are informal and
ambiguous, while the second are usually detailed, lower-level tools. We
have to learn how we can formally represent, generate, and investigate a
mathematical model based on the abstract images extracted from the
expert’s vision of the problem.

Introduction 9

1.3 LG Approach at a Glance

Linguistic Geometry (LG) includes the syntactic tools for knowledge
representation and reasoning about multiagent complex systems. LG has
been developed as a generic approach for a certain class of complex
systems. This approach gives us powerful tools for reducing the search in
different complex problems by decomposing the complex system into a
hierarchy of dynamic interacting subsystems. LG allows us to study this
hierarchy formally, investigating its general and particular properties.
These tools provide a framework for the evaluation of the complexity
and quality of solutions, and for generating computer programs for
specific applications.

The purpose of LG is to provide solutions to a variety of problems
with huge state spaces, where it is desirable to find optimal or “the-best-
you-can-do” behavior of entities generating purposeful transitions from
state to state. Such problems include cooperation/competition of teams
of intelligent (or human guided) robots (e.g., for ground or seagoing
vehicles, aircraft, or spacecraft); safety-critical control systems for the
remote fully automatic objects like planetary exploration vehicles; VLSI
design; planning, scheduling, and resources distribution; chess, etc.
Traditionally, finding optimal or near-optimal behavior of entities for
the above systems required searches for suitable branches in giant search
trees. Such searches are often beyond capabilities of modern and
conceivable future computers. The LG approach dramatically reduces the
size of the search trees, thus making the problems computationally
tractable. Although discrete by its nature, the LG approach could also be
applied to the control of continuous processes described by ordinary or
partial differential equations, albeit after a discretization of the equations.

One of the unique features of the LG approach is the formalization and
utilization of search heuristics developed by highly-skilled human experts
(including chess grandmasters). These experts have developed
sophisticated and successful strategies resulting in tremendous search
reduction in their domains. However, before the present work, the
methods behind the experts’ heuristics and intuition were not understood
by the AI scientists or even by the experts themselves. Based on the
theory of formal languages, geometrical insight, and the powerful
apparatus of modern formal logic, we formalized and generalized these
heuristics, thus enabling them to be applied to a vast class of problems.
Prior to this work, most of these problems were not considered by
experts to be in the areas of applicability of their heuristics.

The results of comparison of the LG approach with other methods are
roughly sketched in Fig. 1.1. Three different search trees are shown. The
top triangle reflects the search tree to be generated employing the Brute
Force Search. Due to the high branching factor this tree is wide. However,
because time is limited, all the branches must be terminated (for example,

10 Chapter 1

at the same depth). The tree generated by applying alpha-beta search
algorithm is deeper and narrower. This is the result of cutoffs that allow
us to reduce the branching factor and search deeper branches within the
same processing time. It is proved that the optimal branch will not be
pruned; it will be the same as in case of the brute force search with the
same depth (Knuth and Moore, 1975). However, even in this case, the
exponential growth with significant branching factor does not allow us to
solve most real-world problems. The third, a very narrow and deep tree
reflects the LG search. Here, the branching factor is either close to one or
exactly one. It has also been proved that for certain classes of problems
the LG algorithm is a winning (draw) strategy (Chapter 13).

Brute Force Search

Alpha-Beta Search

LG Search

Figure 1.1. Compar ison of searches
for the same process ing t ime.

LG approach is applicable to the concurrent multiagent systems. Who
are those multiple agents? Let us introduce two types of agents. Agents of
the top level, the super-agents, are fully capable of acting by means a
number of mobile entities, the local agents. The environment may have a
profound impact on the movements of agents. Some of the locations
may be reachable in a certain number of steps, others may not be

Introduction 11

reachable at all. Consider systems with two super-agents that oppose each
other. They are called the opposing sides. Usually, they pursue opposing
goals. Each of them controls a team of local agents whose freedom of
operation is highly restricted. Ultimately, in the examples considered in
this book, the local agents do not have freedom at all and are fully
controlled by a super-agent. However, the LG tools are applicable to
models where the local agents are less constrained and operate
autonomously with some distributed intelligence. Each super-agent
develops a model of the opposing super-agent and operates assuming that
the adversary will do its best within this model. The model is used for
planning the agent’s actions and choosing the optimal one. The model
establishes local goals for local agents. These local goals are coordinated
with the global goal of the corresponding super-agent. Motions directed
to the local goals are intended for a super-agent to achieve the global one.
The model is dynamic: after every action, which may include concurrent
movements of agents of both sides, it is updated taking into account the
new situation.

The dynamic model can be viewed as a hierarchy of subsystems. We
introduce local goals by decomposing the system of local agents into
subsystems striving to attain these goals. For example, each second level
subsystem includes local agents of both opposing sides: the goal of one
side is to attack and destroy another side’s local agent (a target), while
the opposing side tries to protect it. In the robot control, for example, it
means the selection of a pair of robots of opposing sides: one – as an
attacking element, and the other – as a local target, generation of the
local paths for approaching the target, as well as the paths of other
robots supporting the attack or protecting the target.

In LG the hierarchy of subsystems is represented as a hierarchy of
formal languages. To introduce formal languages following (Hopcroft,
Ullman, 1979), we have to use symbols. A symbol is an abstract entity
that we shall not define formally. Examples of symbols include a, t, a(x i),
t(p2,t2,τ2), (i5), etc. A string (or word) is a finite sequence of
concatenated symbols. For example, a(x1)a(x2) ... a(xn) is a string if
a(x1), a(x2), ... , a(xn) are symbols. An alphabet is a finite set of
symbols. A (formal) language is a set of strings of symbols from some
alphabet. The empty set, ∅, and the set consisting of the empty string
{ε} are languages. Consider a language T and a string t of this language.
Alphabet of the string t, V(t), is a set of symbols whose members occur at
least once in the string t. For example, the set {a(x1), a(x2), ... , a(xn)}
is the alphabet of the string a(x1)a(x2) ... a(xn).

A chart of the Hierarchy of Formal Languages is shown in Fig. 1.2 as a
building set of three types of triangles. Every state of the state space (the
set of all positions, i.e., all possible configurations of agents) is

12 Chapter 1

represented by the 2-hierarchy, two embedded triangles (the Language of
Trajectories and the Language of Webs). Several triangles that represent
states together with their 2-hierarchies and additional attributes are
embedded in one large triangle, a string of the Language of Translations.
This top-level language includes a solution of the problem. A detailed
presentation of the LG Hierarchy of Languages begins in Chapter 2 and
continues in Chapters 8-12. A more elaborate illustration of the chart is
shown in Fig. 1.4. Below, we give a preliminary, brief introduction to this
Hierarchy.

Language

Language
of Webs

Language
of Trajectories

of Translations

Fig. 1 .2 . H ierarchy o f subsystems as Hierarchy
of Formal Languages.

The first-level subsystems in LG are represented by the Language of
Trajectories that is the set of “trajectories”, the following strings of
symbols:

a(x1)a(x2) ... a(xn),

where xi are called parameters. Values of parameters incorporate the
semantics of problem domain. Strings of this type represent paths
(trajectories) of local agents. For example, for a robotic model, xi are the
coordinates of the robot’s planning path.

The second-level subsystems in LG are represented by the Language of
Webs, which is the set of “webs” or “networks”, the following strings of
symbols:

t(p1,t1,τ1)t(p2,t2,τ2) ... t(pk,tk,τk),

Introduction 13

where p i, ti, τi are called parameters; pi is a local agent of the system (a
robot or a software agent), ti is an entire trajectory of the agent pi, τi is a
list of domain-specific parameters. These networks represent a
framework for dynamic tactical planning. The agents move along the
paths (trajectories) attempting to achieve local goals, while advancing the
achievement of the global goal of the super-agent, such as victory in a
combat or the best schedule of a power-producing system. There may be
many levels of network languages representing a hierarchy of subsystems.

The entire system operates by changing from one state to another.
That is, the movement of a local agent from one point to another causes
an adjustment of the hierarchy of languages. This adjustment is
represented as a mapping, a translation, from one hierarchy to another,
or, more precisely, to a new state of the same hierarchy. The search for a
strategy generates a number of paths (sequences of moves) through the
state space which can be considered as series of translations of the
hierarchy of languages.

In the top-level formal language in LG, the Language of Translations,
every “search” is represented by a string of symbols:

(i1) (i2) ... (in),

where ik are called parameters. Each symbol (ik), represents a move of a
local agent along the network. Searches in the Language of Translations
represent the actual searches for an optimal (suboptimal) operation, such
as the winning strategy for a combat, the best maintenance schedule, etc.
Generation in this language is controlled by interaction of networks. This
generation results in a dramatically reduced search which yields a solution
of a problem.

1.4 LG Approach: Deeper Account

A class of problems to be studied are the problems of optimal operation
of an LG system, a Complex System. This system is defined (DEF 2.1-
2.4) as a twin set of elements (local agents) and points (locations), where
elements are units moving from one point to another. It is a very general
representation, e.g., in robot control problems elements are autonomous
robots moving along a path (constructed of the points) through a
complex hazardous 2D or 3D environment. The elements are divided into
two or more opposing sides (super-agents), although, in this book, we
consider only two-side systems. Each side can attack and destroy
opposing elements and protect friendly elements. A destroyed element
must be withdrawn from the system but it can reappear in another
situation. A withdrawal happens if an attacking element comes to the
point where an element of the opposing side stands. Each side aims to
reach a set of specific configurations of elements. For example, this

14 Chapter 1

configuration may reflect a set of specific locations of friendly elements
or a set of locations of elements of both sides with the maximum gain,
the total algebraic value of the friendly and opposing elements destroyed
and withdrawn from the system.

The LG system operates by moving from one system’s state to
another. That is, a move of a player, being a relocation of an element of
that side (player) from one point to another, causes a transition from a
current system’s state to another state. For example the set of desired
configurations of elements can be considered as a set of target states.
Every state can be described by the list of elements (present at the state)
and their locations. LG associates a hierarchy of structures with each
state. A state has a structure of trajectories that are possible paths of
movement of the elements which are present at the state. Each state,
also, has the structure of Zones that represent all areas of local combat at
the state. The structure of Zones is more complex than the structure of
trajectories. The structure of Zones is based on the structure of
trajectories. Thus, LG considers the structure of Zones being higher in the
hierarchy than the structure of trajectories.

The hierarchy of structures was originated from the hierarchy of
subsystems introduced by the highly-skilled human experts. This
introduction is as follows. A one-goal, one-level LG system (for each
side) should be replaced by a multi-goal, multi-level system by introducing
intermediate goals and decomposing the system down into subsystems
striving to attain these goals. The goals for the subsystems are specific
but coordinated within the main mutual goal. For example, each second-
level subsystem, called a Zone, includes elements of the two opposing
sides. The goal of one side is to attack and destroy the target, while the
other side tries to protect it. In the robot control problems, this means
the selection of a pair of robots of opposing sides: one – as an attacking
element, and the other – as a local target, generation of a path for
approaching the target, as well as the paths of other robots supporting
the attack or protecting the target.

A hierarchy of structures is represented in LG as a Hierarchy of Formal
Languages where each string of the lower level language corresponds to a
symbol of the higher-level one (Section 1.3).

Following the LG approach, every first-level subsystem is represented
as the following word, a string of symbols:

a(x1)a(x2) ... a(xn), (1.4.1)

where each symbol a(x i) is taken from the alphabet of symbols {a(x i)}.
Symbol a does not have special meaning except to link parameters xi in a
string and indicate that this string is a trajectory. Values of parameters xi
are defined by the semantics of the problem domain. Strings (1.4.1) form
the Language of Trajectories (DEF 2.8). For example, for the robot

Introduction 15

control problem, xi are the coordinates of the basic points of the robot’s
planning path. For the maintenance scheduling problem, an analogous
string represents a maintenance schedule variant for a specific power unit,
where x1, x2, ..., xn correspond to the particular days of the scheduling
period. Various types of trajectories are defined in Section 2.4.

A second-level subsystem is represented also as a string with
parameters, a web:

t(p1, t1, τ1)t(p2, t2, τ2) ... t(pk, tk, τk), (1.4.2)

where symbol t like an a in (1.4.2) does not have special meaning except
to link parameters in a string and indicate that this string is a web. Values
of parameters (pi, ti, τi) are defined by the semantics of the problem
domain and the lower level subsystems. Symbols pi represent elements of
our system (robots, power units, etc.), ti represent trajectories (lower-
level subsystems) of elements pi, i.e., strings a(x1

pi)a(x2
pi) ... a(xn

pi),
included in this subsystem, τi represent time allotted for movement along
trajectory ti.

Using strings (1.4.1), we can represent paths of system’s elements, and
with the strings (1.4.2), networks of certain paths unified by the mutual
goal. For example, in the robot control model such a network of planning
paths represents a draft short-range plan for approaching a local goal in a
hazardous environment, i.e., getting over the mobile and immobile
obstacles. In the scheduling problem, it corresponds to the maintenance
schedule of a certain power unit including the schedule for the provision
of resources required. A set of strings (1.4.2) is called the Language of
Webs (DEF 2.18). Various types of webs, the so-called Zones, are defined
in Section 2.6.

A transition to another state of the LG system causes an adjustment of
the hierarchy of structures. This adjustment can be represented as a
mapping (translation) to the hierarchy of structures of the other state.
Actually, we can regard the change of the hierarchy of a state as that the
hierarchy itself changes states. This means that at a state of the LG
system the structures of associated trajectories and Zones constitute a
state of the hierarchy of structures. A directed state transition graph of a
system induces a state transition graph of the hierarchy of structures.

LG also introduces a higher level of the hierarchy of structures which is
common to all states. Such a structure represents a game subtree and the
corresponding states of the system that LG strategy for a player
constructs in order to compute a move. This structure is called an LG
search tree (or LG tree). The LG search tree includes all the play variants
that LG algorithm generates on the basis of a game state at which the
player should make a move. The LG tree includes a very small subset of
such variants as opposed to the full game tree. Let us restrict the term LG
search tree to coincide with a subtree representing LG variants used to

16 Chapter 1

compute a move for a player at a state of the LG system. The LG search
tree includes sequences of moves representing (or inducing) transitions
between states of the LG system. Therefore, we can introduce another
tree of corresponding sequences of mappings, translations of the
hierarchy of languages (that represent these states). There exists a one-
to-one correspondence between these trees. Thus, we will write about the
same tree naming it either a tree of moves, or a tree of translations. This
tree is represented as a string that enumerates the edges (the moves) of
the tree in the order of, for example, depth first search tree traversal:

(i1) (i2)... (in) in (1.4.3). The tree itself, then, can be written down as
the pair of the string mentioned above, and the tuple of functions that
produce the children of any tree node. Tuple functions includes a triple of
functions that produce the left-most child, the left-most sibling, and the
parent of any tree node. This tuple determines the signature needed to
describe the algebraic structure of the tree by means of the children
producing functions (DEF 2.26).

Consider the following strings:

((i1) (i2)... (in), functions), (1.4.3)

where every symbol (ik) represents the following three items:
– an edge (arc) of the LG search tree,
– a move, and
– a corresponding translation.
String (1.4.3) is a member of the top-level formal language, the

Language of Translations (Section 2.8 and Chapter 12). Symbol does
not have special meaning except to link parameters in a string and
indicate that this string is a tree of translations. Parameters ik are used to
identify edges (arcs) of a tree. The list of functions called functions
reflects links between the arcs: they are intended to support a tree data
structure represented here linearly as a string of symbols. A construction
of the LG tree (1.4.3) is controlled by generation and interaction of the
webs (1.4.2) and trajectories (1.4.1).

If LG algorithm is used by both players, a variant (or variants) that
reflect application of LG strategy for both players is given by a certain
branch of the LG search tree. However, it need not be a (contiguous)
substring of the string (1.4.3) of the Language of Translations. For
example, consider a 4-node tree (1) (2) (3) (Fig. 1.3). Edge (1) leads
from the root R to the single child X, edge (2) leads to the left child of
X, and edge (3) leads to the right child of X. The depth first search
enumeration is (1) (2) (3). The substring (1) (2) (3) represents a
branch of the tree. There is another branch consisting of the sequence of
edges (1), (3), i.e., (1) (3). However, (1) (3) is not a contiguous
substring of (1) (2) (3).

Introduction 17

X

R

Figure 1.3. A 4-node tree (1) (2) (3).

If the LG algorithm is used by only one player, a play arising as an
application of LG strategy for that player need not be a branch of the LG
tree mentioned above. The reason is that the opponent may use moves
that do not belong to the variants occurring in the LG tree. Because of
the LG’s sophisticated algorithm selecting the variants, the opponents
moves not belonging to the variants will be usually weaker moves. Often,
LG strategy will recognize the weakness in the opponent’s response when
constructing the LG tree for the subsequent moves.

Language

Language
of Webs

Language

of Translations

3

2

4

5

6

1
LG Tree

Node
(State)

LG Search
Tree

of Trajectories

Figure 1.4. Hierarchy of Formal Languages in LG.

A chart of the Hierarchy of Formal Languages is shown in Fig. 1.4.
This is a refinement of the chart shown in Fig. 1.2. The Language of

18 Chapter 1

Translations is a language of trees (searches). A string of this language
can be illustrated by a tree. One of such trees with 5 arcs and nodes 1-6 is
shown in Fig. 1.4. A node of this tree corresponds to a state of a complex
system (1-6). Decomposition of the system into subsystems is
represented in LG by the Hierarchy of Formal Languages. At every state
the decomposition is represented by the hierarchy of two languages, the
2-hierarchy of the Languages of Webs and Trajectories. A string of the
Language of Trajectories corresponds to a symbol of the Language of
Webs. The 2-hierarchy is illustrated by the two embedded triangles
attached to every node of the LG tree. A relationship between this
hierarchy and the top-level Language of Translations (shown as one large
triangle) is different from the relationship between the languages within
the 2-hierarchy. A string of the Language of Translations, a search,
represents an LG search tree with nodes, that are linked to the states with
attached 2-hierarchies. Therefore, the 2-hierarchies correspond to every
symbol of a string of the Language of Translations. This is illustrated in
Fig. 1.4. An LG search can be reflected as the generation of a string (LG
tree) of the Language of Translations.

The advantages of representing a decomposition of an LG system as a
Hierarchy of Formal Languages become more apparent when we consider
the formal mechanism for generating this Hierarchy. In pattern
recognition problems, a formal linguistic approach was proposed for
representation of hierarchical structured information contained by each
pattern, i.e., for describing patterns by means of simpler subpatterns. This
approach brings to light an analogy between the hierarchical structure of
patterns and the syntax of languages. The rules controlling the merging
of subpatterns into patterns are usually given by the pattern description
grammars, with the power of such description being explained by the
recursive nature of the grammars. Using similar approach for generating
trajectories and trajectory networks, we make use of the branch of the
theory of formal grammars developed in (Knuth, 1968; Rozenkrantz,
1969; Volchenkov, 1979; Stilman, 1985). A detailed account into the
controlled grammars and their applications to LG is given in Chapters 8-
12, 14.

Recent investigation of the accuracy of the solutions generated by the
LG algorithm resulted in a deeper understanding of the power of this
approach. It appears that LG tools are able to implement a constructive
decomposition of the state space (Chapter 13). These tools allow us to
formally describe essential subsets of states and formulate intend-to-win
strategies, the classes of paths in the state space leading from the Start
State to the desired subset of states. Some of these strategies can be
eliminated as non-implementable. The next step is an attempt of formal
implementation of the non-eliminated strategies by each of the opposing
sides. This is provably the best each side can do. Application of the

Introduction 19

intend-to-win strategy by each side results in the generation of a tree –
the optimal solution of the search problem.

Similar ideas work for various classes of games. Optimality is proved
for the classes of multiagent serial and concurrent war games with d-
dimensional operational district, a subset of Zd. This investigation led to
the new direction in LG: solving search problems by construction of
strategies without any tree-based search (Chapter 13).

1.5 LG Strategies and Game Theory

Consider the relationship between the LG strategies (for a super-agent of
the LG system of two interacting super-agents) and the strategies of the
game theory. Game theory emerged in the 1930s, e.g., (Von Neumann
and Morgenstern, 1944), (Owen, 1982), and has a rich literature. A
survey is given in (Luce and Raiffa, 1957). A significant branch of game
theory is devoted to modeling economic behavior. In this branch, the
goals of the players are stated by means of payoff function and by a
requirement to maximize a player payoff. While LG employs an
evaluation function that is a form of a payoff, the spirit of LG is closer
to another branch of game theory that was initiated by Gale and Stewart
(1953), and is called two player games with perfect information.

The goals of the players in two player games are stated by means of
desirable sets of plays, called winning sets. A winning strategy for a player
is a pattern of behavior permitting the player to attain the winning set no
matter what the opponent would do. The methods of constructions differ
from those of games modeling economics in employing the methods of
logic, algebra, and topology, rather than of mathematical or functional
analysis, and/or variational calculus. Methods similar to variational
calculus are also used in another branch of game theory called differential
games, (Isaacs, 1965) and Section 1.2.

Gale-Stewart games were extended to games over graphs due to work of
A. Yakhnis and V. Yakhnis (1993) and Zeitman (1994). The earliest
reference to the games over graphs are the classical papers on game
theory such as (Kuhn, 1953) and (Berge, 1957). The games over graphs
(1993-1994) were further extended to allow concurrent moves of more
than two players (V. Yakhnis and B. Stilman, 1995b). The latter games
are closest to the abstract board games employed by the LG systems.

The objectives of the graph games and those of LG are not identical
since within the LG approach the class of useful strategies is wider than
that of winning strategies. Intuitively, the LG-specific strategies could be
understood as "the-best-you-can-do" strategies, rather than winning
strategies. Indeed, often the LG games do not have a “deterministic”
winning strategy due to concurrent moves. As a result, the LG methods
lead to new ways of constructing winning strategies. LG constructs

20 Chapter 1

winning strategies on the basis of mathematical artifacts that LG has
discovered and distilled by formalizing the strategies of experts.

It is convenient to regard an LG system as a two player game where
the sides (or super-agents) are the players. We will relate the notion of
LG strategy for a side or a super-agent to that of a player in a two player
game. Most constructions of a two player win-lose game theory are based
on the concept of a game tree. This tree consists of all possible moves of
players and embraces all possible plays of the game. LG attaches a state
to each node (position) on the game tree. This is a state of the game,
whose main content is the state of the board for the games such as chess,
checkers, tic-tac-toe, etc. For the LG systems (as defined in Section 2.2)
the state of the game is the state of the system.

As in the game theory LG looks for strategies for both sides (players),
but makes the corresponding definitions on the basis of a state of a
system (or game) rather than a game tree. The focus of LG, though, is
effectively computable strategies. This is in line with constructive
approach to finding winning strategies in the theory of two player games
as pioneered by Buchi and Landweber (1969) and continued by Gurevich
and Harrington (1982), A. Yakhnis and V. Yakhnis (1990, 1993),
McNaughton (1993), and Zeitman (1994). The proximity of the goals of
the latter approaches to that of LG is sometimes coincidence, where LG
computes a provably winning (draw) strategy for a player (Chapter 13).
Some other times, LG computes a strategy for a player which is good, but
it may be difficult or intractable to see whether the strategy is winning for
that player. The game theory algorithms for constructing winning
strategies are usually intractable due to the exponential (or worse) running
time, while the LG algorithms are practical and even polynomial-time
(for subclasses of problems).

Slightly paraphrasing a game theory definition of a strategy for a
player over a game tree, we give a definition of an LG strategy based on a
game state. A strategy of a player is a partial function over game states
that produces moves for that player. A winning strategy of a player is a
strategy such that if the player follows that strategy two properties are
satisfied. Firstly, the strategy is defined at every state at which the player
has to move and which was already produced by the use of the strategy
(including the Start State). Secondly, any resulting sequences of moves of
both sides lead the system from the Start State to the target states for the
player, while the opposing side makes arbitrary legal moves. More details
about the LG strategies are provided in Chapter 13.

We defined a strategy using the game tree of all possible moves of both
sides. However, the LG algorithm does not generate this tree. The LG
search procedure generates a very small subtree of the full game tree by
means of generating a rather small subset of all states of a system. In

Introduction 21

Section 1.4 and further in this book, this subtree is called an LG search
tree (or a reduced search tree) as opposed to the full game tree (or a brute
force search tree). It is proved that for some classes of problems, the LG
search tree includes the branches that correspond to sequences of moves
generated by a winning (or draw) strategy (Chapter 13). For other classes
of problems, this tree includes the branches that correspond to sequences
of moves generated by the best strategy known to the experts (while any
winning strategy is unknown). Also, further in this book, we will write
about “trees of moves”, “branches (or sequences) of moves”, and
“variants” (virtual plays), omitting statements about one-to-one
correspondence between arcs (edges) of the trees and moves of players
(sides).

The LG algorithm computes a strategy for a player by selecting the
branches obtained by applying the minimax algorithm on the LG search
tree on behalf of both players. In practice, the tree generation and the
minimax are combined in one procedure. In some cases, the LG tree is so
small that all of its plays are won by the same player. In other words, this
tree represents a winning strategy (Chapter 13) of that player with
respect to the LG tree. It may or may not be the case that the strategy is
winning with respect to the original game tree.

The LG system operates by moving from one state to another. That
is, a move of a player causes a transition from a current system’s state to
another state. If a sequence of state transitions does not have a loop, this
sequence defines a unique play on a game tree. Otherwise, there are many
plays corresponding to the sequence. The plays are different only in how
many times they repeat the moves that correspond to transitions in the
loop(s) of the sequence of states. In other words, the plays vary in how
many times they repeat the loop(s). The important fact is that the state
transition system of an LG system of agents is a graph rather than a tree.
However, the important decisions on whether the game terminates or
who wins the game, are based on the states of the state transition system,
rather than on positions in the game tree. This is due to the LG
formulation of final goals of players as certain target states of the state
transition system.

It is important to keep in mind the distinction between the two cases
of using an LG algorithm to affect the evolution of an LG system. One
case is when LG strategy for a player is applied against an LG strategy for
the other player. The other case is when the source of moves of the
other player is not an LG strategy. In all cases the LG strategy is
represented by the same LG algorithm, where the player, for which a
move is sought, is an input parameter of the algorithm.

Another important distinction is between moves in plays and moves in
play variants or virtual plays or, simply, variants. The moves in a play

22 Chapter 1

constitute a sequence of moves that were actually made by players in the
game. The moves in play variants are sequences of moves of both players
that an LG strategy constructs in order to compute the move for the
player. Such sequences of moves are possible continuations of the existing
play, and they need not consist entirely or substantially of moves actually
made by players.

LG strategy has to rebuild the LG search tree at each state for which it
computes a move for the player. If LG strategy computes a move for the
player at a state S1 and the next move at a state S2, both states will share
many of the same structural components, because they are separated just
by two moves: the move of the player and the move of the opponent.
Thus, the LG algorithm tries to build LG search tree for S2 by
transforming that for S1.

One may think that the LG strategy computes a move for a player at a
system’s state S, by constructing a subset of the state transition system
graph for the LG system. In fact, LG algorithm uses information about
the order of moves in an essential way. The graph above represents all
play variants constructed by the LG algorithm in order to select a move
for the player.

In reality, the LG algorithm produces an enumeration of a subset of
this graph capturing the order of moves in all variants. Such an
enumeration induces a subtree of the game tree extended as far as the
variants went when they were computed by the LG algorithm. The
subtree corresponds to playing the game beginning from the state S.
Though, it is usually a very “narrow” finite subtree of the game tree
corresponding to playing from S. There is one-to-one correspondence
between the subtree of moves capturing all the LG variants on one hand,
and the enumeration of a subset of the state transition graph according to
the moves in all LG variants, on the other hand.

The software system that applies LG maintains the play in the game
and the game subtree representing all LG variants for the last state of the
play. The LG algorithm also maintains the extensive structures (Section
1.5) associated with states that constrain the set of variants that LG
computes.

1.6 LG: Three Stages of Development

As in physics in the 17th century, in AI and, particularly, in LG, the
major generalizations and break-through are still forthcoming. However,
it is quite possible that the first signs of them are around us. In this
respect, it would be helpful to look back at the history of development of
LG. This history may be divided into three stages.

In the late 50s, in Moscow, Professor Mikhail Botvinnik, the World
Chess Champion, began his investigation of the methodology of the most

Introduction 23

advanced chess players. Ten years later, this investigation resulted in the
revolutionary ideas for the construction of chess programs that simulate
grandmasters in playing chess. In the beginning of the 70s, Dr. Botvinnik
initiated and directed research project PIONEER, with the author as key
investigator. This research was conducted in Moscow at the National
Research Institute for Electrical Engineering. It was funded by the USSR
State Department of Science and Technology and the USSR Department
of Energy. The goal of this research was to learn and implement as
computer programs the methodology of the most advanced chess players
as well as other domain experts for solving search problems almost
without search, and, apply this approach to a wide spectrum of complex
practical problems. A collection of powerful algorithms was developed
within the project PIONEER (Botvinnik, 1984). Numerous experiments
were performed to compare the systems based on that initial model and
systems utilizing other approaches. The experiments showed that many
problems, which were not solvable by the other approaches at all, were
successfully solved by the prototypes of LG systems. Moreover, for the
rest of the problems, the new systems were significantly faster than the
other approaches. Project PIONEER continued through the end of 80s.
The time period of 1958-1988 with preliminary design and vast
experiments within project PIONEER is considered as the first stage of
the development of LG (Section 1.7).

Multiple attempts to formalize and, possibly, generalize the heuristics
discovered in the course of the project PIONEER encountered enormous
difficulties. These attempts began in the mid-70s pushed by the scientists
who wanted other problem domains to benefit from the discoveries of
this project. Another goal was to understand the fundamental nature of
the results, to apply formal approach and theoretically evaluate the
soundness, the completeness, and the running time of the developed
algorithms. The difficulties were related to the unusual nature of the
heuristic model being constructed. In particular, mathematical tools to be
applied for formalization should have reflected the hierarchical and
dynamic structure of the model, high flexibility of the subsystems, should
have allowed global efficient control of every subsystem and the entire
hierarchy. The development of the Hierarchy of Formal Languages, a
mathematical model of heuristic algorithms of the project PIONEER, by
the author is considered as the second stage of the LG heritage (Section
1.8). Time-wise, the first results were obtained in 1979, but the
development continued through 1990 in Moscow at the National
Research Institute for Electrical Engineering and later at the National
Research Institute for Oil Development. This research was funded within
the framework of the project PIONEER and through other sources.

The year of 1990 is the beginning of the third stage of the
development (Section 1.9) when LG was established as a self-determined
field of research in Artificial Intelligence. This stage began at McGill

24 Chapter 1

University, Montreal, Canada. From September of 1991 to date, it
continues at the University of Colorado at Denver, USA. In the 90s, the
initial mathematical model was unified and generalized (Stilman, 1992-
1998). Since both, the formal languages and the geometry of the
operational district and subsystems, were involved, the advanced new
model was named Linguistic Geometry in 1991. In retrospect, the
previously developed part of this approach (stages one and two) is now
being referred to as LG as well. The goals being pursued include the
development of solid theoretical foundations, expansion to new problem
domains, evaluation of complexity of classes of problems employing the
LG tools and accuracy of these tools, development of efficient
applications and a universal LG testbed to be applied to a variety of
problem domains.

What was not expected or planned in advance is the re-development of
the top level of LG, the Language of Translations, employing the so-
called no-search approach. The ability to generate provably optimal
solutions for classes of problems without any tree-based search shows the
fascinating power of LG that originated from expert heuristics. This
investigation allowed us to identify a new class problems of low
(polynomial) computational complexity among the problems that were
considered computationally hard (exponential or worse). During the third
stage, the funding was provided by a number of sources, including the
National Science and Engineering Research Counsel (NSERC) of Canada
and McGill University, Montreal, Canada, University of Colorado at
Denver, USA, the U.S. Air Force Office of Scientific Research, and the
U.S. Department of Energy through Sandia National Laboratories,
Albuquerque, NM.

It is likely that several important events taking place in 1999,
including publication of this book and a substantial grant from DARPA,
will assist in advancing the theory and building real world applications of
LG, and manifest the beginning of a new fourth stage of the development
of LG.

1.7 Stage One: Project PIONEER

The first ten years of research, since 1958, resulted in publication of the
book “Algorithm for Playing Chess” (Botvinnik, 1968, 1970). While the
mathematical formalization of the algorithm published in the book may
be somewhat questionable, the major principles for search reduction laid a
solid foundation for further development. Another publication entitled
“A Flow-Chart of the Algorithm for Playing Chess” (Botvinnik, 1972)
should be considered as an official start of the project PIONEER.
Unfortunately, the above publications included nothing beyond ideas and

Introduction 25

low level flow charts. The algorithm and the program were yet to be
developed.

The research team involved in this project had two subjects for
investigation: advanced experts (like Botvinnik himself) and computer
programs, once they were developed. These programs included computer
chess program PIONEER 1.x and a number of programs PIONEER 2.x –
4.x for planning and scheduling. Feedback from both resulted in constant
rethinking and multiple redevelopment of both algorithms and programs.
Many old and new ideas were tested in the course of the project. For
example, the idea of trajectories limited by a horizon and the idea of
decomposition of a complex system into the dynamic hierarchy of
subsystems, proved to be essential from the very beginning. That was not
the case with the second-level subsystem, the network of trajectories.
Defined originally as the key area of a combat, later as a zone (in
multiple versions), and as a chain of trajectories, this subsystem went
through a number of major and minor changes. Heuristic algorithms for
generation of the first and second-level subsystems, trajectories and
Zones, were presented in (Stilman, 1975, 1977, 1984a). Similar problems
were encountered with the higher-level subsystems and with the algorithm
for global control later formalized as Grammar of Translations.

By the end of 1976, the first version of the chess program PIONEER
was completed. It was tested on solving chess endgames. Of course, the
goal was not just to solve endgames. The solutions should have been
obtained employing the search trees close to the trees of variants
analyzed by a chess expert. With respect to accuracy, the generated
solutions had never been considered as the absolute optimal solutions of
the problems. Moreover, for a vast majority of the endgames, optimal
solutions are still unknown. A proof of optimality employing
conventional search algorithms requires enormous search and, usually, is
beyond capabilities of any computers (Section 1.2). What is usually called
a solution is a variant (or several variants) which experts agreed upon. A
deeper understanding of optimality and its role in LG came much later in
the third stage of the LG development (Section 1.9 and Chapter 13).

The first two endgames selected for the program tests, R. Reti and M.
Botvinnik-S. Kaminer endgames, are considered simple for a chess player.
However, this simplicity is hidden behind million-move search trees to be
analyzed employing the brute force approach. Of course, a chess expert is
able to avoid this multitude of computations. During the experiments
with PIONEER, a number of parameters evaluated included the branching
factor (Section 1.2) as well as some other parameters of the search
(Botvinnik, 1979, 1984). The search tree generated by PIONEER in
January of 1977 while solving the R. Reti endgame contained 54 moves
(T = 54). Hence, taking into account that the depth of the search required
here, L = 6, a branching factor B~1.68 was obtained (1.2.2). The search
trees generated by conventional chess programs for this endgame include

26 Chapter 1

about 106 moves. In the M. Botvinnik-S. Kaminer endgame (Botvinnik,
1984), the total number of moves included in the search was equal to 145,
maximum length L = 12, and B~1.35. Although both endgames are
solvable by conventional chess programs, these results were very
interesting because of substantial reduction of the branching factor. One
of these problems, the R. Reti endgame, serves as a model for the far
reaching generalizations in LG (Chapters 3, 4, 6, 13, and 14).

Among the variety of complex problems solved by PIONEER, we will
discuss two more. Both have yet to be solved by the conventional chess
programs. The search algorithms with alpha-beta pruning (Section 1.2)
failed to provide a substantial reduction of the branching factor. As a
result, the expected run times were not feasible.

The first problem is the G. Nadareishvili endgame (Nadareishvili 1975;
Botvinnik, 1979, 1984). It was solved by PIONEER in August of 1977.
The total number of nodes generated was T = 200, while the depth of the
search required to find a solution is equal to 25. Consequently, B~1.14.
The unreduced branching factor might be estimated as B~15. The solution
of this endgame demonstrated power of the heuristic model, the
foundation of PIONEER. A dynamic hierarchy of subsystems, trajectories
and networks, allowed us to find a very deep solution almost without
branching. Of course, this was just a solution approved by experts. At that
time nobody raised the question of optimality or even about the accuracy
of this solution. Now, 20 years later, we can suggest that this is the
mathematical optimum. It is reasonable to expect that this will be proved
employing ideas of the no-search approach in LG (Chapter 13) in the
near future. The G. Nadareishvili endgame also served as a pattern for a
number of generalizations included in this book (Chapter 5).

The second complex problem is the middle-game position in the
legendary game played by World Chess Champions M. Botvinnik and H.-
R. Capablanca in 1938. This chess combination is usually considered as an
eternal example of brilliant chess art. The start position contains 19
pieces and the unreduced branching factor might be estimated as B~20.
The depth of the search should not be less than 23. In April of 1980,
program PIONEER generated a search tree of 40 nodes with the
branching factor B~1.05 (Botvinnik, 1980a, 1980b, 1982). A solution
found by PIONEER was exactly the same as the variant played by the
champions in 1938. It is likely that this solution is provably optimal.

In 1981-1988, all the R&D on project PIONEER were supported by
the software development environment called PROGRAMMER’S
WORKBENCH (PW), (Stilman, 1994f). It was developed by Mirniy,
Roizner, Chudakov, and Stilman (1986), and later significantly expanded
by Mirniy, Chudakov, and Stilman (1988). PW was intended to support
concurrent software development and configuration maintenance of
large-scale research projects. PIONEER and other complex projects

Introduction 27

included an extended prototype period. Basically, the programs were used
as tools for the investigation and redevelopment of algorithms. The
entire software life cycle was considered as a sequence of prototypes.
Each prototype should have been extremely flexible to provide multiple
redesigns. PW supported multiple redevelopment iterations of
changeable prototypes through the universal hard skeleton of software
versions. Additionally, PW effectively supported teamwork on project
PIONEER by combining independence of a software designer acting alone
and strict discipline of cooperative research projects. While Dijkstra
(Dijkstra, 1976; Gries, 1983; Stilman, 1994f) was the source language
fully supported by PW, the actual development (including the debug
mode) was conducted employing the highest-level problem-oriented
language. PW allowed us to construct, expand, and maintain various
versions of this language for different problem domains. PW was
implemented for IBM mainframe hardware. Later, the PW tools were
used at several research institutions for the development and maintenance
of large-scale Artificial Intelligence projects. These tools were ready for
expansion to support object-oriented frameworks.

Project PIONEER resulted in the development of one of the most
interesting and powerful heuristic models based on heuristic networks.
Application of the developed model to the chess domain was
implemented in full as program PIONEER 1.x (Botvinnik, 1984). A
similar heuristic model was implemented for the long-range planning and
scheduling in a number of computer programs PIONEER 2.x, 3.x, 4.x.
They were used for scheduling of maintenance of power units, for
smoothing the graph of power consumption, and for planning the
national economy in the former USSR (Stilman, 1985a, 1993a). The
models were introduced in (Stilman, 1977; Botvinnik, 1984), (Reznitskiy,
Stilman, 1983), (Reznitskiy, Bordiugov, Stilman, 1983), (Botvinnik et
al.,1983), (Stilman, 1992d) in the form of ideas, plausible discussions, and
program implementations.

Experiments with maintenance scheduling programs PIONEER 2.x
demonstrated the advantages of the new approach. The program
PIONEER 2.1 for monthly scheduling of power units generated various
schedules with a reduced branching factor not exceeding 1.06, down from
50-100 for the brute force approach (Reznitskiy, Stilman, 1983),
(Stilman, 1985a). Experiments with program PIONEER 2.2 for annual
(365 days) maintenance scheduling of power equipment also
demonstrated a reduced branching factor close to 1. In contrast with
PIONEER 2.1, this program was able to maximize the number of power
units included on the schedule by adjusting the duration of maintenance of
these units. A new level of benefits was shown by the program PIONEER
2.3 that generated annual power maintenance schedules by adjusting the
values of the power reserve. Slight adjustments of the power reserve
(within the range of 6%) allowed this program to schedule maintenance

28 Chapter 1

of all the power plants that submitted requests. The most interesting
results in scheduling were achieved by program PIONEER 2.4 for annual
scheduling with multiple resource allocation including various types of
maintenance personnel. These requirements resulted in a significant
growth of the unreduced branching factor while the program managed to
reduce it down to 1.005. It generated high quality annual schedules for the
USSR National Power System. Application of LG to scheduling and
additional details about scheduling programs are presented in Chapter 7.

Programs PIONEER 3.1 and 3.2 allowed to smooth the weekly graphs
of power consumption by changing weekly schedules (moving off days)
for various consumers. They decreased the maximums of power
consumption by 3.5% while minimizing the number of changed schedules
(Botvinnik, Mirniy, 1983).

The top achievement in applying PIONEER’s model in the non-chess
domains was the development of the programs PIONEER 4.1 and 4.2 for
planning the USSR national economy for 15 and 25 years, respectively.
These programs balanced the production of the national industry and the
national budget based on the aggregated 18-branch model of the national
economy (Reznitskiy, 1987).

The results obtained within the framework of PIONEER in solving
complex search problems for various problem domains indicate that
implementations of the dynamic hierarchies resulted in the construction
of highly goal-driven algorithms that generated search trees with the
branching factor close to one.

What was in common in those hierarchies? What formal tools could be
used to reflect these commonalties and to apply them in different
problem domains?

1.8 Stage Two: Mathematical Tools

In 1979-1990, the first version of formal tools for LG was developed
(Fig. 1.5). A story behind this result is instructive. It was clear that the
mathematical tools should have been discrete, symbolic, and should have
reflected the dynamic hierarchy of subsystems. The specific requirements
looked as follows.

The mathematical tools should reflect the problem statement as a
system of local agents, the entities, and their locations. The entities are
broken down in two sides with opposing interests. They can move by
changing their locations. Some of the locations are free from entities but
may be occupied later. A move takes place during one time interval. All
time intervals are to be equal. Also, the entities should have well-defined
rules limiting their movements. A system operation can be reflected as a
variant of moves. Every variant can be compared with other possible
variants. A solution of a problem is the operation selected from the rest

Introduction 29

according to a certain criterion of optimality. A typical difficulty of such
selection is related to the number of possible variants and, consequently,
to the running time of the search required. Quite often, for real world
problems, these time increased to the levels that made them practically
unsolvable.
The formalization of the problem statement shown above was not of
great concern. This class of problems could be formally represented
employing numerous existing techniques, and all representations are
equivalent. However, the chosen representation of the problem statement
should be well coupled with the formal representation of the method used
to solve it, the LG approach. It should serve as a foundation and a
mathematical environment for the formal representation of the dynamic
hierarchy of subsystems. A formal problem statement (Chapter 2) was
developed by following the theories of formal problem solving and
planning by McCarthy and Hayes (1969), Fikes and Nilsson (1971),
Sacerdoti (1975), McCarthy (1980), Nilsson (1980), and others, based
on the first order predicate calculus. The main idea of this formalization
of the problem statement was borrowed from the system STRIPS
developed by Fikes and Nilsson (1971).

Syntactic Methods in
Pattern Recognition

 Pavlidis T.
 Narasimhan R.
 Fu K. S.

 Shaw A.C.
 Feder J.

Theorem
 Proving

McCarthy J.
Hayes P.

First Order
Predicate
Calculus

Heuristics
PIONEER

 Botvinnik M.
 Stilman B.

Problem Solving

 Nilsson N.J.
 Fikes R.E.

 Programmed
Formal Grammars
 Knuth D.
 Rozenkrantz D.
 Volchenkov N.

 LINGUISTIC GEOMETRY

Rosenfeld A.

Project
Search STRIPS

Picture Description
Languages

Figure 1.5. Or ig in o f LG: formal too ls and heur is t ics .

30 Chapter 1

Even a brief description of requirements for representation of dynamic
hierarchies given below shows that this task was incomparably more
difficult than formalization of the problem statement. It took a number
of years to come up with a satisfactory solution.

A hierarchy to be introduced is intended to reveal and make use of the
inherent hierarchical relationship between entities and groups of entities
with respect to the main goal of a system. The lower level of the
hierarchy is a trajectory, a planning path, with an entity moving along it.
When it moves forward, part of a trajectory that is left behind should
disappear, and re-appear again, when an entity backtracks during the
search to explore another path. Formal tools should have generated all
kinds of trajectories encountered in a number of problem domains, e.g., a
shortest path, a path going around obstacles, etc.

The higher levels of the hierarchy are networks of trajectories (with
their entities). Every network has its ultimate goal related to a specific
location, the final destination. A number of types of networks were
introduced: attack Zones, domination Zones, retreat Zones, etc. Every
network includes entities participating in achieving the ultimate goal.
This participation is twofold. Entities of one side pursue their goal by
moving, protecting each other, and destroying the enemies. Entities of
the other side, by similar actions, do their best to prevent the opponent
from achieving the goal. An entity can participate in many networks
simultaneously. The movements of entities are organized in a timely
fashion. For example, if an entity has enough time to move along a
trajectory to intercept an opposing entity, this trajectory is included in
the network and the movement is allowed. If this is not the case, the
trajectory is dropped. In a network, parts of trajectories and bundles of
trajectories with their entities disappear when movement along them does
not make sense with respect to the ultimate goal. This may be related to
the timing, the state configuration, or other reasons. Calculations of time
and other factors related to the network construction and re-construction
are done within each network independently. For this purpose, the other
networks are ignored. Networks can be connected to each other if the
ultimate goal of one of them becomes the goal of the joint network,
while the goals of the components become subordinate to the main goal.

In the 70s, a number of existing mathematical tools was evaluated and
dropped. Usually, they did not explicitly reflect the hierarchy of
subsystems or did not provide sufficient flexibility for representation of
dynamic subsystems. For example, these deficiencies are inherent to the
representation of trajectories and networks as graphs. At that point, a
linguistic representation was considered as a candidate. Indeed, a
trajectory is a finite sequence of planning steps of an entity while a string
is a finite sequence of symbols. It seems reasonable to represent
trajectories as formal strings of symbols. In this case, a set of trajectories
could be represented as a formal language. The next question to be

Introduction 31

answered was how to represent the hierarchies via languages. It was quite a
surprise when we realized that the linguistic representation of hierarchies
is most natural. Indeed, a set of dynamic subsystems could be represented
as a hierarchy of formal languages where each sentence, a group of words
(a string of symbols), of the lower level language corresponds to a word in
the higher level one. This is a routine procedure in our natural language.
For example, the phrase: “A man who teaches students” introduces the
hierarchy of languages. Symbols of the lower-level language may include
all the English words except “professor”. A higher-level language might
be the same language with addition of one extra word “professor” which is
simply a short designation for “A-man-who-teaches-students.” Note that
the hierarchical architecture of natural languages and related approaches
adopted in LG are examples of the general semiotic mechanism of multi-
resolution introduced later by Meystel (1996a, 1996b).

The key question remained: what are the specific languages to be used
for the model? In the 50s through 70s, a formal syntactic approach to
the investigation of properties of natural language resulted in the fast
development of the theory of formal languages by Chomsky (1963),
Ginsburg (1966), Hopcroft and Ullman (1979), and others. This
development provided an interesting opportunity for dissemination of
this approach to different areas. In particular, there came an idea of
analogous linguistic representation of physical images (Fig. 1.2). This idea
was successfully developed into syntactic methods of pattern recognition
by Narasimhan (1966), Fu (1974, 1982), and Pavlidis (1977), and picture
description languages by Shaw (1969), Feder (1971), and Rosenfeld
(1979). The Plex languages introduced by Feder (1971) demonstrated a
particular descriptive power. In a usual string of symbols, every symbol is
connected only with two neighbors, left and right. It has two attaching
points. In Plex languages, a symbol called NAPE (an n attaching-point
entity) can have an arbitrary number n of attaching points for joining to
other symbols. The resulting strings represent general higher-dimensional
patterns that allow us to generate images that represent trees,
sophisticated chemical formulas, electrical circuits, etc. Something similar
could be done in LG with trajectories and networks.

Searching for adequate mathematical tools formalizing heuristics, we
transformed the idea of linguistic representation of complex natural and
artificial images into the idea of similar representation of complex
hierarchical systems (Stilman, 1981, 1984b, 1985a, 1985b, 1985c,
1992). However, the appropriate languages should have had more
sophisticated and flexible attributes than languages usually used for
pattern description. Origin of such languages can be traced back to
research on programmed attribute grammars by Knuth (1968),
Rozenkrantz (1969), and others. In this respect, special attention should
be paid to the results of N. Volchenkov (1979) and L. Kuzin (1979).
Volchenkov developed incredibly powerful generating grammars, which

32 Chapter 1

he called BUPPG. A modification and generalization of these grammars
(Stilman, 1993a, 1993b) allowed us to generate languages that met all the
requirements for representation of dynamic hierarchies. This
modification, named controlled grammars (Chapter 8), allowed us to use
them as a universal tool on all levels of LG and formally prove
correctness and completeness of the generated languages, and evaluate
their running time (Chapters 8-12, and 14). A new version of controlled
grammars is considered in (Yakhnis, V., Yakhnis, A., and Stilman, 1996,
1997).

Until the third stage of LG development, in the beginning of the 90s,
the formal tools were not organized as a full-scale complete mathematical
model. Development of the programs PIONEER at the second stage was
based on a collection of heuristic algorithms. Multiple experiments with
these programs allowed us to make far reaching generalizations and later
construct a mathematical model.

1.9 Stage Three: Modern History

Since 1991, this approach is called Linguistic Geometry (LG), due to the
geometrical nature of the discovered heuristics and the mathematical
tools of the theory of formal languages used to formalize them. A
complete presentation of the two levels of the hierarchy of languages was
given in (Stilman, 1993a, 1993b, and 1994d).

In the 70s and 80s, the goals of research were related to the discovery
of the most intimate features of expert search heuristics and the
development of draft formal tools in order to formalize them. In the 90s,
with the establishment of LG, the goals have changed. In the third stage
of LG development, the scientific goals are related to the exploration of
the limits of efficiency, generality, computational complexity, and
accuracy of LG.

A partial list of questions for the research on LG in the 90s is as
follows. What is going to be the most efficient general structure of the
LG applications? Are the higher-dimensional problems really solvable
employing LG tools? What would be the impact on the running time if we
switch from 2D to 3D problems? How would the running time change if
we increase the number of agents and provide them with more advanced
moving abilities? Can we solve problems with partially or even totally
concurrent moves employing similar formal tools? What is the
computational complexity of these problems?

Fortunately, and unexpectedly, not only these, but the following
additional questions were answered as well. How accurate are the
solutions? Can we evaluate and prove a certain level of accuracy? If our
proof is constructive, how can we use the same techniques for generating
solutions?

Introduction 33

All the programs developed in the 70’s and 80’s within the framework
of the project PIONEER were highly problem oriented. They served as
implementations of heuristic hierarchies of subsystems for specific
problem domains. In the 90s, we began exploration of various software
tools and approaches for the implementation of the general hierarchy of
formal languages and their applications.

A set of general LG grammars was first implemented at the University
of Colorado at Denver in 1993 by D. King and R. Mathews employing
CLIPS and C languages, respectively (King, 1993), (Mathews, 1993).
While R. Mathews implemented just two levels of the hierarchy,
trajectories and Zones, D. King developed a working prototype of the full
scale hierarchy of grammars using the CLIPS programming environment.
Also, he showed that CLIPS programming tools (Giarratano and Riley,
1998), intended originally for the expert systems’ development,
demonstrated high efficiency for the quick implementation of the LG
grammars. Of course, efficiency at the implementation stage was
achieved at the expense of the running time of the application. However,
these tools could serve as a platform for the development of prototype
versions.

Another direction of research was related to exploration of actual
applicability of the general LG tools to various problem domains. In
1995, C. Fletcher implemented the Grammars of shortest and admissible
trajectories with generalized relations of reachability employing C++
(Fletcher, 1996), (Fletcher and Stilman, 1997). He applied this tool for
the development of the simulation software prototype of robot control
in industrial environment. Interpretation of various robot movements via
relations of reachability allowed this system to make sub-optimal path
planning for robots and avoid collisions with immobile and mobile
obstacles. Various versions of this prototype were demonstrated at Sandia
National Laboratories, Rockwell Science Center, and at a number of
conferences.

A domain-oriented version of the LG tools was developed by R. Turek
(Turek, 1996 and 1997). He developed highly efficient commercial
software for the real-time emergency vehicles’ routing. These vehicles
(police, fire, and ambulance) were directed to the place of emergency in
response to the 911 phone call. The LG grammars used relations of
reachability that reflected traffic impedance on the streets of the city of
Aurora, CO. The street maps were retrieved from the geographical
information system (GIS), while information about impedance was
updated in sub-real time employing information collected by cruising
police vehicles. Prototypes of this program were demonstrated at the
NASA Goddard Space Flight Center at Greenbelt, MD, and at a number of
conferences.

In 1996, D. Wood developed BGF, a universal framework for board
game applets, employing Java (Wood, 1996). This tool was intended for

34 Chapter 1

the development of advanced interfaces of the LG applications for
various problem domains. In 1997-98, the BGF was used by E. Skhisov
for the development of his combat simulation tool (Skhisov, 1997).

Combat simulation tool, the most advanced implementation of the LG
algorithms so far, was developed by E. Skhisov in 1997 within the joint
project of the University of Colorado at Denver and the University of
Denver (Skhisov, 1997), (Skhisov and B. Stilman, 1997, 1998a, and
1998b). His tool generated the full scale hierarchy of languages including
a prototype version of the Grammar of Translations, the no-search
approach (Chapter 13). This implementation was intended for
exploration of novel concepts in LG. In particular, this was the first tool
applicable to the problems with concurrent movements of agents. Also,
this was the first implementation of LG for the parallel computing
environment, a network of computers. Specifically, the Grammar of
Trajectories was executed in parallel. Combat simulation tool was
implemented in C++ and Java. A new version of the tool is being
developed exclusively in Java.

In 1998, the class of problems in which LG is applicable was expanded
by inclusion of the problems for the local agents that move with variable
speed. This expansion makes the LG models closer to the real world
problems. M. Stilman generalized the relations of reachability and
modified the Grammar of shortest trajectories for this case (Stilman, M.
and Yakhnis, V., 1998), (DEF 2.4 and Section 9.10). His C++
implementation of this grammar generated all the shortest paths for an
airplane which must avoid flying over certain territories. At the beginning
the airplane accelerates, then it cruses with a constant speed, and, in the
end of the flight, it slows down to land.

Application of LG to the Safety Critical Control Systems, Cruise
Missiles Control, Planetary Exploration Vehicles, National Missile
Defense (with threat and countermeasure assessments), and Space Combat
are currently being considered.

As the general structure and details of the LG implementations become
clear, a new project is being considered. A universal LG Testbed will serve
as a framework for the development of LG applications by tuning to the
specific problem domain. Also, this Testbed will be used for quick testing
of new ideas and concepts in LG.

To answer the questions about the limits of applicability and resource
requirements of the LG solutions, we developed a number of problems of
gradually increased complexity. Some of them were based on the
endgames considered in the past, R. Reti endgame, G. Nadareishvili
endgame, and others. The sequence of problems of gradually increased
complexity included problems with 3D and n×n district, greater number of
agents, sophisticated mobility, alternating concurrent and totally

Introduction 35

concurrent movements, etc. Solving these problems with the LG tools
should give us a basis for further theoretical investigation.

In 1993, the CLIPS-based implementation of the hierarchy of
grammars was applied to the problem of optimal control of four robotic
vehicles in a 2D space participating in a two-player game. The problem
was represented as 2D 4-agent discrete pursuit-evasion game, the 2D/4A
problem (Stilman, 1996a, 1997a, and Chapter 3), a version the R. Reti
endgame. Conventional approaches require a million move tree to solve
it. The LG tools allowed us to find the solution by generating the search
tree which included only 46 moves, with the branching factor of 1.65. An
interesting result was obtained in 1994, when the 2D/3A problem was
generalized for the 3D case, the 3D/4A problem (Stilman, 1994b, 1994c,
1996a, and Chapter 4). The problem was represented as a pursuit-evasion
game of space stations that have to reach designated areas in space, and
space ships that may intercept stations or prevent interception. The
conventional approaches require a trillion move tree to solve it, while the
tree generated by the LG tools consisted of merely about 50 moves with
the branching factor close to one. Apparently, the LG tools allowed us to
eliminate the exponential growth of the running time (with respect to the
input) for this class of problems (Section 4.4).

Another significant test of the LG tools, involving much larger state
space, was conducted for the 2D and 3D pursuit-evasion games, which
involve 8 aerospace vehicles with advanced moving abilities (Stilman,
1995a, 1995b, 1997d, and Chapter 5). This was a version of G.
Nadareishvili endgame. The depth of the solution and, therefore, the
depth of the search, was extremely big, at least 25 moves. Theoretical
estimates showed that finding solutions of these problems requires
generation of search trees that include approximately 1525 and 3025

moves for the 2D/8A and 3D/8A problems, respectively. To generate a
tree of that size is beyond reasonable time constraints of any computer.
In contrast, the search trees generated employing the LG tools consist of
about 150 moves. The branching factor was just 1.12.

These examples demonstrated significant growth of complexity: the
number of vehicles, their moving abilities, the dimension of an
operational district, and, especially, the required depth of the search.
While the running time of the analysis-of-a-state increased, we can
suggest that this is just a low-degree polynomial growth with respect to
the length of the input. (The evaluation of the running time is presented
in Chapter 14.) The search trees practically did not grow. In all the
experiments, the search trees were very small, which allows us to suggest
that the size of these trees is also a low-degree polynomial with respect to
the input. We can conclude that the total computational requirements of
the LG models, which is a product of the running time of the analysis-of-
a-state procedure and the size of a tree, is a polynomial.

36 Chapter 1

In the above examples, the mobile entities, aircraft, spacecraft, etc.,
moved in a serial mode, one entity at a time. Moreover, the movements
of the opposing sides alternated. It was desirable to expand the LG
approach to the problems with concurrent movements. A formal
definition of the class of multiagent systems, where LG is applicable,
never included the requirement of serial or alternating moves, however,
all the examples included the serial moves only. A new direction for
application of LG to multiagent systems with high degree of concurrency
was established in 1994 (Stilman, 1995c, 1995d, 1997a, 1997b, and
Chapter 6). A new class of games, called multiagent graph-games with
simultaneous moves, was developed by Yakhnis, V. and the author
(1995). These new games permit simultaneous (concurrent) moves of
several cooperating/competing agents; moreover, each super-agent may
either skip or move one or more local agents at the same time.

A number of examples were developed in 1994-95. We gradually
increased the level of concurrency while trying to explore its impact on
the effectiveness of the LG tools (Chapter 6). Application of LG to the
problems with totally concurrent movements was initially funded by the
U.S. Air Force within the Summer 1995 Faculty Associateship Program at
Phillips Laboratory, Kirtland AFB (Stilman, 1997a). A prototype of the
program for the real time generation of the air combat scenario was
developed at Phillips Laboratory in 1995. It was intended to control
manned and unmanned aerial vehicles guided by the satellite based sensors
to detect mobile adversarial missile launchers and destroy them. In 1996,
this research was supported by a grant from the Sandia National
Laboratories. In these problems, the aircraft, both cooperating and
opposing, could move concurrently. These applications involved two
opposing teams, two aircraft on each team. Introduction of concurrency
resulted in a significant growth of the branching factor - if we apply the
brute force search - up to 324. This is the base of the exponent that
shows the size of the search trees to be generated. In contrast, the search
tree generated by the LG tools for this totally concurrent model contains
just 40 moves with the branching factor of about 1.5. Later, these results
were generalized for an n×n district, (Stilman and Fletcher, 1998) and
Chapters 6, 13, and 14.

While introduction of concurrency has a profound impact on the
running time of conventional algorithms, it appears not to be the case
with the LG solutions. Apparently, this means that the LG tools allowed
us to identify a subclass of low (polynomial) complexity problems in the
class of problems that are usually considered as computationally hard.
This subclass includes not only serial but concurrent problems as well
(Chapters 13 and 14). A deeper investigation of these issues is
forthcoming.

Introduction 37

One of the latest achievements in LG is the mathematical proof of
optimality of the solutions obtained for some classes of problems,
including the so-called Reti-like combat simulation problems (Stilman,
1996b, 1997c, 1997d). This investigation was supported by a grant from
the Sandia National Laboratories. This result, obtained in 1996 and later
improved, still looks amazing for those involved in research on LG.
During the entire history of the development of LG, the major concern
was how to demonstrate the quality of the approximate solutions, almost
winning strategies, e.g., how to measure their accuracy. As it was discussed
earlier, these were solutions approved by experts. Existence of an error
was not even in question because heuristic algorithms usually do not
guarantee optimum. For years we have tried to come up with a measure of
this error. Surprisingly, this research resulted in a proof of no error for
the Reti-like problems (Section 13.9). This new result tells us that the LG
tools generate optimal solutions for a class of search problems.
Optimality means that the result is the same as the solution, which could
be obtained using the exhaustive search.

The most interesting feature of this proof is that it is constructive.
The proof is based on a decomposition of the State Space into subsets of
states and a construction of the set of paths between these subsets. Every
path represents an intend-to-win LG strategy for one of the super-agents.
This set of paths is the full set of strategy-candidates. Then some of the
candidates are pruned as non-implementable. An attempt of
implementation of the rest of the strategy-candidates, the best left for
each side, will result in the actual construction of the solution, the
(optimal) strategy for this problem. Two solutions, the one constructed
in the proof, and the original generated by the LG tools, are the same.
However, the new solution, obtained by construction of strategies, does
not use any tree-based search. Moreover, it is provably optimal.

It was desirable to convert this proof into the pure construction of
solutions. This was accomplished in 1998 (Stilman, 1998a, 1998b, and
Chapter 13). It was named a no-search approach. This approach was
expanded to problems with concurrent movements of agents. A combat
simulation tool developed by E. Skhisov was used first for experiments
with concurrent problems employing the no-search approach (Skhisov
and Stilman, 1998a and 1998b). The problems were solved with the
branching factor equal exactly to one, i.e., without branching to different
directions.

At the moment, we have two versions of the top level of the LG
algorithm, the Grammar of Translations and the no-search algorithm.
The former is a universal tool applicable to various problems. However, it
generates a search tree, though small, and does not provide a formal basis
for a conclusion about the accuracy of the solution; usually, it generates
best known solutions. On the other hand, the no-search algorithm
generates a provably optimal solution, a winning strategy, without any

38 Chapter 1

tree-based search, but at the moment it is only applicable to a subclass of
problems. Note that the term “no-search approach” means that the tree-
based search has been eliminated, but the algorithm may still include some
other types of searches, e.g., polynomial-time searches. It is likely that
the future research based on the expansion of the no-search approach will
cause redevelopment of the top level of hierarchy of languages, the
Language of Translations.

Besides the problems with mobile entities and opposing sides (such as
robot simulation), the LG tools can be effectively applied to the problems
without explicit conflict and opposing sides, e.g., to scheduling problems
with resource allocation. The foundations of this approach are related to
applications of project PIONEER to scheduling and planning at the Stage
One of LG development (Section 1.7). To apply the LG tools, we
introduce an artificial two-player game, i.e., artificial conflict,
operational district, mobile entities, and opposing agents (Stilman and
Fletcher, 1998 and Chapter 7). This formulation allows us to solve a
number of problems of much higher dimension, which are intractable
employing conventional approaches.

