
TRANSLATIONS OF NETWORK LANGUAGES

D R A F T*

BORIS STILMAN
Department of Computer Science & Engineering, University of Colorado at Denver
Campus Box 109, Denver, CO 80217-3364. Email: bstilman@cse.cudenver.edu

Abstract—In this paper we describe new results of research on geometrical properties of complex
control systems, the so-called Linguistic Geometry. This research includes the development of
syntactic tools for knowledge representation and reasoning about large-scale hierarchical complex
systems. It relies on the formalization of search heuristics of high-skilled human experts that have
resulted in the development of successful applications in different areas. A hierarchy of subsystems
of a complex system, the networks of paths, is represented as a hierarchy of formal languages. In
this paper we investigate transformations of these networks while system moves from one state to
another. The investigation consists of formal, constructive separation of changed and unchanged
parts of system representation, the hierarchy of languages. Thus, we address the problem relative
to the well-known Frame Problem for planning systems. A partial solution is presented in the form
of the theorem about translations of network languages. Formal considerations are illustrated by
example of Air Force robotic vehicles.

1. Introduction

 Important real-world problems can be formally represented as problems of reasoning about
complex control systems. The difficulties we meet trying to find the optimal operation for real-
world complex systems are well known. While the formalization of the problem, as a rule, is not
difficult, an algorithm that finds its solution usually results in the search of many variations. For
small-dimensional "toy" problems a solution can be obtained; however, for most real-world
problems the dimension increases and the number of variations increases significantly, usually
exponentially, as a function of dimension [1]. Thus, most real-world search problems are not
solvable with the help of exact algorithms in a reasonable amount of time.

There have been many attempts to design different approximate algorithms. One of the
basic ideas is to decrease the dimension of the real-world problem following the approach of a
human expert in a certain field, by breaking the problem into smaller subproblems. There are two
most important issues in this decomposition.

The first issue is to find out how to break a complex system down into subsystems, to
study these subsystems separately or in combinations, making appropriate searches, and eventually
combine optimal solutions for the subsystems into an approximately optimal solution for the entire
system [2–4]. It is easy if the system can be decomposed into completely independent subsystems.
Usually, the subsystems are not independent, and the system can be considered as nearly
decomposable [2]. For such problems we need the techniques that can handle each subsystem
separately and then introduce the impact of potential interactions of these subsystems into the final
solution.

The second issue is to avoid recomputation of the entire system state provided that system
operates by moving from one state to another. Instead, we should consider only that part of the
state that may have changed. For complex systems the Problem of Change or Frame Problem [5–
8] consists of representation of knowledge in such a way that we can effectively determine which

* The final version was published as Stilman, B., Translations of Network Languages, An International Journal:
Computers & Mathematics with Applications., Vol. 27, No. 2, pp. 65-98, 1994.

2

facts must change and which must not. It is especially important to make this determination without
exhaustive search when the complexity of the system state increases. There is no universal recipe
for this step since such a recipe must be based on the connections between the facts of the
particular problem.

These ideas have been implemented for many problems with varying degrees of success.
Implementations based on the formal theories of linear and nonlinear planning [6–13] meet hard
efficiency problems. An efficient planner requires an intensive use of heuristic knowledge. On the
other hand, a pure heuristic implementation is unique. There is no general constructive approach
for such implementations. Each new problem should be carefully studied and previous experience
usually can not be applied. Basically, we can not answer the question: what are the formal
properties of human heuristics which drove us to a successful hierarchy for a given problem and
how can we apply the same ideas in a different problem domain. Moreover, every attempt to
evaluate the computational complexity and quality of a pilot solution requires implementing its
program, which in itself is a unique task for each problem.

In the 1960’s a formal syntactic approach to the investigation of properties of natural
language resulted in the fast development of a theory of formal languages by Chomsky [14],
Ginsburg [15], and others [16, 17]. This development provided an interesting opportunity for
dissemination of this approach to different areas. In particular, there came an idea of analogous
linguistic representation of images. This idea was successfully developed into syntactic methods of
pattern recognition by Fu [18], Narasimhan [19], and Pavlidis [20], and picture description
languages by Shaw [21], Feder [22], and Phaltz, Rosenfeld [23]. The power of a linguistic
approach might be explained, in particular, by the recursive nature and expressiveness of language
generating rules, i.e., formal grammars.

Searching for the adequate mathematical tools formalizing human heuristics of dynamic
hierarchy, we have transformed the idea of linguistic representation of complex real-world and
artificial images into the idea of similar representation of complex hierarchical systems [24].
However, the appropriate languages should possess more sophisticated attributes than languages
usually used for pattern description. They should describe mathematically all of the essential
syntactic and semantic features of the system and search, and be easily generated by certain
controlled grammars. The origin of such languages can be traced back to the origin of SNOBOL-4
programming language and the research on programmed attribute grammars and languages by
Knuth [16], Rozenkrantz [17], and Volchenkov [25].

A mathematical environment (a “glue”) for the formal implementation of this approach was
developed following the theories of formal problem solving and planning by Nilsson, Fikes [6],
Sacerdoti [9], McCarthy, Hayes [5], and subsequent work [8-13], based on first order predicate
calculus.

To show the power of the linguistic approach it is important that the chosen models of the
heuristic hierarchical system be sufficiently complex, poorly formalized, and have successful
applications in different areas. Such a model was developed by Botvinnik, Stilman, and others,
and successfully applied to scheduling, planning, and computer chess. The hierarchical
constructions were introduced in [4] in the form of ideas and plausible discussions.

An application of this hierarchy to a chess model was implemented in full as program
PIONEER [4]. Similar heuristic hierarchy was implemented for power equipment maintenance in a
number of computer programs being used for maintenance scheduling all over the USSR [24, 26,
27, 33, 34]. The results shown by these programs in solving complex chess and scheduling
problems indicate that implementations of the dynamic hierarchy resulted in the extremely goal-
driven algorithms generating search trees with a branching factor close to 1.

In order to discover the inner properties of human expert heuristics, which were successful
in a certain class of complex systems, we develop a formal theory, the Linguistic Geometry [28–
34]. In these papers we described the domain of applicability of the theory, introduced a class of
formal grammars to be used, specified and investigated the Hierarchy of Formal Languages.
Papers [28, 29] include the general survey of this approach. The works [30-33] describe in detail
and investigate the lowest level of the Hierarchy, the Language of Trajectories. The next level, the
Family of Network Languages, considered in [34]. Basically, papers [28-34] deal with the

3

formalization of the first issue of decomposition of the complex system, the break into subsystems
and their representation.

In this paper we address the second issue, the Problem of Change. In order to approach a
formal solution of this Problem, we employ relations of reachability [33] and trajectory connection.
Based on that, we create a hierarchy of languages for each system state. Then we investigate the
translations of one hierarchy into another while system moves to another state. Our goal is to
separate changed and unchanged parts of this hierarchy during the translation. This separation
should be done constructively, in the form of an algorithm. Theorem 8.1 (Section 8) gives a partial
solution of this problem. In Sections 9, 10 we illustrate formal discussion by example of Air Force
robotic vehicles.

2. Class of Problems

The class of problems to be studied includes problems of optimal operation of a complex
system, with a twin-set of elements and points where elements are units moving from one point to
another.

More precisely, a Complex System is the following eight-tuple:
< X, P, Rp, {ON} , v , S i, S t, TR>,

where
X={xi} is a finite set of points; P={pi} is a finite set of elements;
P is a union of two non-intersecting subsets P1 and P2;
Rp(x, y) is a set of binary relations of reachability in X (x and y are from X, p from P);
ON(p)=x, where ON is a partial function of placement from P into X;
v is a function on P with positive integer values; it describes the values of elements. The

Complex System searches the state space, which should have initial and target states;
S i and S t are the descriptions of the initial and target states in the language of the first order

predicate calculus, which matches with each relation a certain Well-Formed Formula (WFF). Thus,
each state from Si or St is described by a certain set of WFF of the form {ON(pj) = xk};

TR is a set of operators, TRANSITION(p, x, y), of transition of the System from one state
to another one. These operators describe the transition in terms of two lists of WFF (to be removed
and added to the description of the state), and of WFF of applicability of the transition. Here,

Remove list: ON(p)=x, ON(q)=y;
Add list: ON(p)=y;
Applicability list: (ON(p)=x)^Rp(x, y),

where p belongs to P1 and q belongs to P2 or vice versa. The transitions are carried out in turn
with participation of elements p from P1 and P2 respectively; omission of a turn is permitted.

According to definition of the set P, the elements of the System are divided into two subsets
P1 and P2. They might be considered as units moving along the reachable points. Element p can
move from point x to point y if these points are reachable, i.e., Rp(x, y) holds. The current
location of each element is described by the equation ON(p)=x. Thus, the description of each state
of the System {ON(pj)=xk} is the set of descriptions of the locations of the elements. The operator
TRANSITION(p, x, y) describes the change of the state of the System caused by the move of the
element p from point x to point y. The element q from point y must be withdrawn (eliminated) if p
and q belong to the different subsets P1 and P2.

The problem of the optimal operation of the System is considered as a search for the
optimal sequence of transitions leading from one of the initial states of Si to a target state S of St. It
is a very general representation, e.g., in robot control problems elements are autonomous robots
moving along the points of a complex hazardous environment on the surface or in space. The
elements are divided into two or more sides; the goal of each side is to attack and destroy opposite
side elements and to protect its own. Each side aims to maximize a gain, the total value of opposite
elements destroyed and withdrawn from the system. Such a withdrawal happens if an attacking

4

element moves to a point where there is already an element of the opposite side.
A robot control model can be represented as a Complex System naturally (Fig. 1). A set of X

represents the operational district that could be the area of combat operation broken into squares,
e.g., in the form of the table 8 x 8, n=64. It could be a space operation, where X represents the set
of different orbits, or a navy battlefield, etc. P is the set of robots or autonomous vehicles. It is
broken into two subsets P1 and P2 with opposing interests; Rp(x, y) represent moving
capabilities of different robots: robot p can move from point x to point y if Rp(x, y) holds. Some
of the robots can crawl, the other can jump or ride, or even sail and fly. Some of them move fast
and can reach point y (from x) in “one step”, i.e., Rp(x, y) holds, others can do that in k steps
only, and many of them can not reach this point at all. ON(p)=x, if robot p is at the point x; v(p)
is the value of robot p. This value might be determined by the technical parameters of the robot. It
might include the immediate value of this robot for the given combat operation; Si is an arbitrary
initial state of operation for analysis, or the starting state; St is the set of target states. These might
be the states where robots of each side reached specified points. On the other hand St can specify
states where opposing robots of the highest value are destroyed. The set of WFF {ON(pj) = xk}
corresponds to the list of robots with their coordinates in each state. TRANSITION(p,x,y)
represents the move of the robot p from square x to square y; if a robot of the opposing side stands
on y, a removal occurs, i.e., robot on y is destroyed and removed.

Four robots with different moving capabilities are shown in Fig. 1. The operational district X
is the table 8 x 8. Squares d5, e6, f7, g3, g4 representing a restricted area are excluded. Robot
FIGHTER standing on f6, can move to any next square (shown by arrows). The other robot
BOMBER from h5 can move only straight ahead, e.g., from h5 to h4, from h4 to h3, etc. Robot
MISSILE standing on d7 can move only along diagonals but it can pass squares located on this
diagonal without stops. Thus, robot FIGHTER on f6 can reach any of the points y ∈{e5, e7, g7,
g6, g5, f4} in one step, i.e., RFIGHTER(f6, y) holds, while MISSILE can reach a4, b5, c6, e8, c8
in one step. Robot BOMBER standing on h5 can reach only h4. Obviously, moving capabilities of
these robots are similar to the well-known chess pieces King, Bishop, and Pawn, respectively.

Assume that robots FIGHTER and MISSILE belong to one side, while BOMBER belong to
the opposite side: FIGHTER ∈ P1, MISSILE ∈ P1, BOMBER ∈ P2. Also assume that the fourth
robot, TARGET, (or unmoving device) stands on h1. TARGET belongs to P1 which means that

character function χ(BOMBER, TARGET)=0. (Function χ(p, q) is defined on P x P and equals 1

if p and q both belong to P1 or P2; χ(p, q) = 0 in the remaining cases.) Thus, robot BOMBER
should reach point h1 to destroy the TARGET while FIGHTER and MISSILE will try to intercept
this motion.

1

2
3

4

5

6
7

8

a b c d e f g h
Fig. 1 . Interpretation of the Complex System for the robot control model.

5

It was easy to show that robot control model can be considered as Complex System. Many
different technical and human society systems (including military battlefield systems, economic
competition, positional games) which can be represented as twin-sets of movable units (of two or
more opposite sides) and their locations, thus can be considered as Complex Systems. But it is
interesting that a wide class of operation research problems such as power maintenance scheduling,
long-range planning, operations planning, without obvious movable units and opposed sides can
be represented as Complex Systems [24, 33, 34]. The idea is that optimal variant of operation of
these real-world systems may be artificially reduced to a two-sides positional game where one side
strives to achieve a goal and the other is responsible for provision of resources.

With such a problem statement for the search of the optimal sequence of transitions leading
to the target state, we could use formal methods like those in the problem-solving system STRIPS
[6], nonlinear planner NOAH [10], or in subsequent planning systems [8-13]. However, the
search would have to be made in a space of a huge dimension (for nontrivial examples, that, of
course, do not include our “toy-dimensional” robot control model). Thus, in practice no solution
would be obtained. We devote ourselves to search for an approximate solution of a reformulated
problem. A one-goal, one-level system could be substituted for a multi-goal, multi-level system by
introducing intermediate goals and breaking the system down into subsystems striving to attain
these goals. The goals of the subsystems are individual but coordinated within the main mutual
goal. For example, each second-level subsystem includes elements of both sides: the goal of one
side is to attack and gain some element (a target), while the other side tries to protect it. In a robot
control, this means the selection of a couple of robots of opposing sides: one – as an attacking
element, and the other – as a local target, generation of the paths for approaching the target as well
as the paths of other robots supporting the attack or protecting the target.

3. Language of Trajectories

Following a linguistic approach each subsystem could be represented as a string of
symbols with parameters: a(x1)a(x2)...a(xn), where the values of the parameters incorporate the
semantics of the problem domain or lower-level subsystems.

Here, we define the lowest-level language of the hierarchy of languages, the Language of
Trajectories. It serves as a building block to create the upper-level languages. The Language of
Trajectories actually formalizes the description of the set of lowest-level subsystems, the set of
different paths between different points of the Complex System. An element might follow a path to
achieve the goal “connected with the ending point”.

A trajectory for an element p of P with the beginning at x of X and the end at y of X
(x≠y) with a length l is the following string of symbols with parameters, points of X:
to=a(x)a(x1)…a(xl). Here each successive point xi+1 is reachable from the previous point xi:
Rp(xi, x i+1) holds for i=0,1,…, l–1; element p stands at the point x: ON(p)=x. The empty string e
is called a trajectory of the length 0. We denote tp(x, y, l) the set of trajectories in which p, x, y,

and l are the same. P(to)={x, x1, ..., xl} is the set of parametric values of the trajectory to.
A shortest trajectory t of tp(x, y, l) is the trajectory of minimum length for the given

beginning x, end y and element p.
A Language of Trajectories Lt

H(S) for the Complex System in a state S is the set of
all the trajectories of the length less or equal H.

A deeper study of the Language of Trajectories and generating grammars Gt (1) , Gt (2) is
presented in [30-33].

4. Languages of Trajectory Networks

6

After defining the Language of Trajectories, we have the tools for the breakdown of our
System into subsystems. According to the ideas presented in [4], these subsystems should be
various types of trajectory networks, i.e., some sets of interconnected trajectories with one singled
out trajectory called the main trajectory. An example of such a network is shown in Fig. 2.

1

2

3

4

57

6

9
8

10

11

13
12

q

q

q

q

p

p
p

0

1

2

2

4
3

1

Fig. 2 . A network language interpretation.

The basic idea behind these networks is as follows. Element po should move along the main
trajectory a(1)a(2)a(3)a(4)a(5) to reach the ending point 5 and remove the target q4 (an opposite
element). Naturally, the opposite elements should try to disturb those motions by controlling the
intermediate points of the main trajectory. They should come closer to these points (to the point 4
in Fig. 2) and remove element po after its arrival (at point 4). For this purpose, elements q3 or q2
should move along the trajectories a(6)a(7)a(4) and a(8)a(9)a(4), respectively, and wait (if
necessary) on the next to last point (7 or 9) for the arrival of element po at point 4. Similarly,
element p1 of the same side as po might try to disturb the motion of q2 by controlling point 9 along
the trajectory a(13)a(9). It makes sense for the opposite side to include the trajectory
a(11)a(12)a(9) of element q1 to prevent this control.

Similar networks are used for the breakdown of complex systems in different areas. Let us
consider a formal linguistic formalization of such networks. The Language of Trajectories
describes "one-dimensional" objects by joining symbols into a string employing reachability
relation Rp(x, y). To describe networks, i.e., “two-dimensional" objects made up of trajectories,
we use the relation of trajectory connection.

Definition 4.1. A trajectory connection of the trajectories t1 and t2 is the relation C(t1,t2). It
holds, if the ending link of the trajectory t1 coincides with an intermediate link of the trajectory t2;

more precisely t1 is connected with t2, if among the parameter values P(t2)={y,y1,…,yl} of
trajectory t2 there is a value yi = xk, where t1=a(xo)a(x1)…a(xk). If t1 belongs to some set of
trajectories with the common end-point, than the entire set is said to be connected with the
trajectory t2.

For example, in Fig. 2 the trajectories a(6)a(7)a(4) and a(8)a(9)a(4) are connected with the
main trajectory a(1)a(2)a(3)a(4)a(5) through point 4. Trajectories a(13)a(9) and a(11)a(12)a(9)
are connected with a(8)a(9)a(4).

Definition 4.2. A set of trajectories CAB(t) from B, with which trajectory t is connected, is
called the bundle of trajectories for trajectory t relative to the set B of trajectories.

7

To formalize the trajectory networks we should define some routine operations on the set of
trajectories: a k-th degree of connection and a transitive closure.

Definition 4.3. A k-th degree of the relation C on the set of trajectories A (denoted by
CA

k) is defined as usual by induction.
For k = 1 CA

k(t1,t2) coincides with C(t1,t2) for t1,t2 from A.
For k > 1 CA

k(t1,t2) holds if and only if there exists a trajectory t3 from A, such that C(t1,t3)
and CA

k-1(t3,t2) both hold.

Trajectory a(11)a(12)a(9) in Fig. 2 is connected (degree 2) with trajectory
a(1)a(2)a(3)a(4)a(5), i.e., C2(a(11)a(12)a(9), a(1)a(2)a(3)a(4)a(5)) holds.

Definition 4.4. A transitive closure of the relation C on the set of trajectories A (denoted
by CA

+) is a relation, such that CA
+(t1,t2) holds for t1 and t2 from A, if and only if there exists i >

0 that CA
i(t1,t2) holds.

The trajectory a(10)a(12) in Fig. 2 is in transitive closure to the trajectory
a(1)a(2)a(3)a(4)a(5) because C3(a(10)a(12), a(1)a(2)a(3)a(4)a(5)) holds by means of the chain
of trajectories a(11)a(12)a(9) and a(8)a(9)a(4).

Definition 4.5. A trajectory network W relative to trajectory to is a finite set of trajectories
to,t1,…,tk from the language Lt

H(S) that possesses the following property: for every trajectory ti
from W (i = 1, 2,…,k) the relation CW

+(ti,to) holds, i.e., each trajectory of the network W is
connected with the trajectory to that was singled out by a subset of interconnected trajectories of
this network. If the relation CW

m(ti, to) holds, trajectory ti is called the m negation trajectory.

Obviously, the trajectories in Fig. 2 form a trajectory network relative to the main trajectory
a(1)a(2)a(3)a(4)a(5). We are now ready to define network languages.

Definition 4.6. A family of trajectory network languages LC(S) in a state S of the
Complex System is the family of languages that contains strings of the form

t(t1, param)t(tp, param)…t(tm, param),
where param in parentheses substitute for the other parameters of a particular language. All the
symbols of the string t1, t2,…, tm correspond to trajectories that form a trajectory network W
relative to t1.

Different members of this family correspond to different types of trajectory network
languages, which describe particular subsystems for solving search problems. One of such
languages is a language that describes specific networks called Zones. They play a main role in the
model considered here [4, 34]. The formal definition of this language is essentially constructive
and requires showing explicitly a method for generating this language, i.e., a certain formal
grammar. This grammar will be discussed later. In order to make our points transparent, first, we
define the Language of Zones informally.

A Language of Zones is a trajectory network language with strings of the form
 Z=t(po,to,τo) t(p1,t1,τ1)…t(pk,tk,τk),

where to,t1,…,tk are the trajectories of elements po,p2,…,pk respectively; τo,τ1,…,τk are positive
integer numbers (or 0) which “denote the time allocated for the motion along the trajectories in a
correspondence to the mutual goal of this Zone: to remove the target element – for one side, and to
protect it – for the opposite side. Trajectory t(po,to,τo) is called the main trajectory of the Zone. The

8

element q standing on the ending point of the main trajectory is called the target. The elements po
and q belong to the opposite sides.

To make it clearer let us show the Zone corresponding to the trajectory network in Fig. 2.
Z =t(po, a(1)a(2)a(3)a(4)a(5), 4)t(q3, a(6)a(7)a(4), 3)t(q2, a(8)a(9)a(4), 3)t(p1, a(13)a(9), 1)

t(q1, a(11)a(12)a(9), 2) t(p2, a(10)a(12), 1)
Assume that the goal of the white side is to remove target q4, while the goal of the black side is to
protect it. According to these goals element po starts the motion to the target, while blacks start in
its turn to move their elements q2 or q3 to intercept element po. Actually, only those black
trajectories are to be included into the Zone where the motion of the element makes sense, i. e., the
length of the trajectory is less than the amount of time (third parameter τ) allocated to it. For
example, the motion along the trajectories a(6)a(7)a(4) and a(8)a(9)a(4) makes sense, because
they are of length 2 and time allocated equals 3: each of the elements has 3 time intervals to reach
point 4 to intercept element po assuming one would go along the main trajectory without move
omission. According to definition of Zone the trajectories of white elements (except po) could only
be of the length 1, e.g., a(13)a(9) or a(10)a(12). As far as element p1 can intercept motion of the
element q2 at the point 9, blacks include into the Zone the trajectory a(11)a(12)a(9) of the element
q1, which has enough time for motion to prevent this interception. The total amount of time
allocated to the whole bunch of black trajectories connected (directly or indirectly) with the given
point of main trajectory is determined by the number of that point. For example, for the point 4 it
equals 3 time intervals.

5. Language of Zones

Here we consider a formal definition of the Language of Zones employing class of controlled
grammars. This class of grammars was formally introduced and considered in details in [33, 34].
An example of actual generation in such a grammar applied to the Network Language is presented
in Section 9. Definition 5.1 has some differences with definition considered in [34]. It applies to
the definition of function ALPHA (Table 2). Both definitions are valid but the definition in [34]
should be considered as the definition of a minimal Zone while next we define a maximum Zone.
The difference is that maximal Zone includes all the trajectories of all the opposite elements which
can participate in the interception of the main element. The minimal Zone includes the reduced
amount of trajectories in order to make the network smaller (for actual implementations).

Definition 5.1. A language LZ(S) generated by the grammar GZ (Tables 1, 2) in a state S of a
Complex System is called the Language of Zones.

TABLE 1
A Grammar of Zones GZ

L Q Kernel, πk πn FT FF
__ for all z from X
 1 Q1 S (u, v, w) –> A(u, v, w) two ø

 2i Q2 A(u, v, w) –>t(hio(u), lo+1) TIME(z)=DIST(z,hio(u)) 3 ø

A((0, 0, 0), g(hio(u),w),zero)

 3 Q3 A(u, v, w) –> A(f (u, v), v, w) NEXTTIME(z)= four 5

init(u, NEXTTIME(z))

 4j Q4 A(u, v, w) –> t(hj(u), TIME(y))) NEXTTIME(z)= 3 3

9

A(u, v, g(hj(u), w)) ALPHA(z, hj(u), TIME(y)–len(hj(u))+1)

 5 Q5 A(u, v, w) –> A((0, 0, 0), w, zero) TIME(z)=NEXTTIME(z) 3 6

 6 Q6 A(u, v, w) –> e ø ø

VT ={t} is the alphabet of terminal symbols, e is an empty string,
VN ={S , A} is the alphabet of nonterminal symbols,
VPR =TruthUPredUConUVarUFuncU{symbols of logical operations} is the alphabet of the

first order predicate calculus PR,
Truth ={T, F}
Pred ={Q1 ,Q2 ,Q3 ,Q4 ,Q5 ,Q6} are the following WFF of the predicate calculus

PR, the conditions of applicability of productions.
Assume that χ(p, q) is a character function of the set (P1 x P1)∪(P2 x P2),

where P1∪P2 = P. It means that χ(p, q) = 1, if both p and q belong P1 or P2,

otherwise χ(p, q) = 0.

Q1(u) = (ON(po)=x) ^ (MAPx,po(y) ≤ l ≤ lo) ^ (∃q((ON(q)=y) ^ (χ(po, q)=0)))
Q2(u) = T
Q3(u) = (x≠n) ^ (y≠n)

Q4(u) = (∃p1((ON(p1)=x) ^ (l > 0) ^ (((χ(po, p1)=1) ^ (MAPx,p1(y)=1)) ∨
((χ(po, p1)=0) ^ (MAPx,p1(y) ≤ l))))

Q5(w) = (w≠zero)
Q6=T

Var = {x, y, l, , v1, v2, ..., vn, w1, w2, ..., wn} are variables;
for the sake of brevity:

u=(x, y, l), v =(v1, v2, ..., vn),
w=(w1, w2, ..., wn), zero = (0, 0, ..., 0)

Con = {xo,yo,lo,po} are constants;
Func=Fcon UFvar are functional symbols;

Fcon={fx, fy, fl, g1 , g2 , . . . , gn, h1 , h2 , . . . , hM, h1
o, h2

o, . . . , hM
o, DIST,

init, ALPHA, len}, f = (fx, fy, fl), g = (gx1, gx2, . . . , gxn),
M=|Lt

l o (S)| is the number of trajectories Lt
l o(S);

functions are defined in Table 2.
Fvar={xo,yo,lo,po, TIME, NEXTTIME (are defined in Table 2)}

E =Z+U X U P U Lt
l o (S) is the subject domain;

Parm: S –>Var, A –>{u, v, w}, t –>{p, , }, is such a mapping that matches each
symbol of the alphabet VTUVN a set of formal parameters;

L= {1, 3, 5, 6} U two U four, two={21,22,...,2M}, four={41,42,...,4M}. L is a finite set
called the set of labels; labels of different productions are different;

FT is a subset of labels of the productions permitted on the next step of derivation if Q=T; it
is called a permissible set;

FF is analogous to FT but permitted in case of Q=F.
At the beginning of derivation:

u=(xo, yo, lo), w = zero, v = zero, xo ∈ X, yo ∈ X, lo ∈ Z+ ,po ∈ P,
 TIME(z) = 2n, NEXTTIME(z) = 2n for all z from X.

TABLE 2

10

Definition of functions of the Grammar of Zones GZ

D(init) = X x X x Z+ x Z+ D(len)= P x Ltlo (S)

init (u,r) =
2n, if u = (0,0,0),

r, if u ≠ (0,0,0).




len(p, t) = m, t =a(zo)a(z1)...a(zm)

D(f) = (X x X x Z+ U{0, 0, 0}) x Z+n

f (u, v) =

(x + 1,y,l), if (x ≠ n) ∧ (l > 0),

(1, y +1, TIME(y +1)* vy+1), if (x = n) ∨ ((l ≤ 0) ∧ (y ≠ n)),

(0,0,0), if (x = n) ∧ (y = n).






 

D(DIST) = X x P x Ltlo (S). Let to ∈ Ltlo (S), to =a(zo)a(z1)...a(zm), to ∈ tpo(zo, zm, m);
If

for some k (1 ≤ k ≤ m) x = zk,
then DIST(x, po, to) = k+1
else DIST(x, po, to) = 2n

D(ALPHA) = X x P x Ltl o (S) x Z+

ALPHA(x, po, to, k) =
max(NEXTTIME(x), k), if (DIST (x,po , to) ≠ 2n) ∧ (NEXTTIME(x) ≠ 2n)

NEXTTIME(x), if DIST (x,po , to) = 2n),

k , if DIST (x,po , to) ≠ 2n) .





 

D(gr) = P x Ltl o (S) x Z+n, r ∈ X.

gr(po ,t o, w) =
1, if DIST(r,p o,t o) < 2n ,

w r , if DIST(r, po ,t o) = 2n .




D (hio) = X x X x Z+ ; Denote TRACKSpo = {po} x (∪ L[Gt(1)(x, y, k, po)]
If 1≤k≤l

TRACKSpo = e

then hi
o(u) = e

else TRACKSpo
= {(po,t1) ,(po,t 2),..., (po,t b)},(b ≤ M), hi

o(u) =
(po, ti) , if i ≤ b ,

(po, tb) , if i > b .





D(hi) = X x X x Z+ ; Denote TRACKS = ∪ TRACKSp, where TRACKSp is the same as for hio

If ON(p)=x
TRACKS = e
then hi(u) = e

else TRACKS = {(p1,t 1),(p1,t 2) ,...,(pm ,t m)}, (m ≤ M), hi (u) =
(p i, ti), if i ≤ m,

(pm ,t m) , if i > m.




One of the Zones to be generated for the robot control model shown in Fig. 1 is as follows:

11

t(BOMBER,tB,4)t(FIGHTER, tF,5)t(MISSILE, tM,5)t(MISSILE, tM1, 3)t(FIGHTER, tF1, 2),
where

tB=a(h5)a(h4)a(h3)a(h2)a(h1), tF=a(f6)a(e5)a(e4)a(f3)a(g2)a(h1),
tM=a(d7)a(b5)a(f1)a(g2)a(h1), tM1=a(d7)a(b5)a(f1)a(h3), tF1=a(f6)a(g5)a(h4)

The generation of this Zone (Fig. 3) is considered in detail in Section 9.

1

2
3

4

5

6
7

8

a b c d e f g h
Fig. 3. An interpretation of the trajectory network language for the robot control model.

6. Translations of Languages

Network languages allow us to describe the "statics", i.e., the states of the System. We
proceed with the description of the "dynamics" of the System, i.e., the transitions from one state to
another. The transitions describe the change of the descriptions of states as the change of sets of
WFF. After each transition a new hierarchy of languages should be generated. Of course, it is an
inefficient procedure. To improve an efficiency of applications in a process of the search it is im-
portant to describe the change of the hierarchy of languages. A study of this change should help us
in modifying the hierarchy instead of regenerating it in each state. The change may be described as
a hierarchy of mappings – translations of languages. Each hierarchy's language should be
transformed by the specific mapping called a translation.

Definition 6.1. A translation relation Tr from a language L1 to a language L2 is the binary
relation Tr from L1 into L2 for which L1 is the domain and L2 is the range. If Tr(a, b) holds, then
the string b is called the output for the input string a.

In general, for the translation relation for each input string there may be several output
strings. However, in our case we can consider the translation relation as a mapping, i.e., "for each
input – no more than one output.”

Definition 6.2. Let the Complex System move from the state S1 to the state S2 by applying the
operator To= TRANSITION(p,xo,yo). A Translation of Languages of Trajectories is a
mapping

∏To: Lt
H(S1) –> Lt

H(S2),
of such a sort that trajectories of the form a(x)a(y)…a(z) are transformed as follows:

– are "shortened" by the exclusion of the first symbol a(x), if the transition To carries out
along such a trajectory: x = xo & y = yo. (If y = z, i.e., y is the ending point, the
trajectory is transformed into the empty trajectory e.)

– are transformed into the empty trajectory e, if
element p moves away from such a trajectory: x = xo & y ≠ x1,

12

or this element is withdrawn: x = x1 and WFF ON(q) = x1 comes into the
Remove list of the transition To.

– are transformed into itself in all the other cases.

Obviously, mapping ∏Mo is not a mapping "onto" and has a non-empty kernel, i.e., a nonempty
co-image of the empty trajectory e.

To proceed with the description of the hierarchy change we should define a translation of the
hierarchy’s next level, the Trajectory Network Languages. Let us consider the definition of the
translation for the Language of Zones.

Definition 6.3. A Translation of Languages of Zones is a mapping of the following
form:

πTo: LZ(S1) –> LZ(S2),
where Zone Z1 is translated into Zone Z2, i.e., πTo(Z1) = Z2 if and only if the main trajectory to1 of
Zone Z1 is translated into the main trajectory to

2 of the Zone Z2 by the corresponding trajectory
translation, ∏To(to1) = to2.

State S1

2

3

4

57

6

9

10

11

13

12

q

q

q

q

p
p

14
 16

 15

18

q

 p

17

5

2

1
3

4

2

 1

 1

8

o

State S2

2

3

4

57

6

9

10

11

13

12

q

q

q

q

p
p

14
 16

 15

18

q

 p

17

5

2

1

3

4

0

2

 1

 1

 8

Fig. 4 . A translation of Languages of Zones.

13

For example, in Fig. 2 after transition TRANSITION(p2, 10, 12) the trajectory a(10)a(12)
is translated into the trajectory e and all the remaining trajectories are translated into itself. After
transition TRANSITION(po, 1, 2) the Zone depicted in Fig. 2 is translated into a new Zone with
the main trajectory a(2)a(3)a(4)a(5), because this transition causes such a translation of trajectories
that trajectory a(1)a(2)a(3)a(4)a(5) is translated into the trajectory a(2)a(3)a(4)a(5).

Let us take a look at the different example (Fig. 4). The Language of Zones in State 1
consists of two Zones with the same main trajectory a(1)a(2)a(3)a(4)a(5). The difference between
these Zones is in the trajectories of element q1. Trajectory a(10)a(11)a(12)a(9) is included into
Zone 1 while a(10)a(13)a(14)a(9) together with a(17)a(14) are included into Zone 2. After
TRANSITION(q1,10, 11) the Language of Zones in State S1 is translated into the new Language
of Zones in State S2. Trajectory a(10)a(11)a(12)a(9) is shortened; it is translated into
a(11)a(12)a(9). This is the only difference between the Zone 1 and its translation. The change for
Zone 2 is more essential. It “looses” trajectories a(10)a(13)a(14)a(9) and a(17)a(14) completely.
(The trajectories and their links that are not included in the Language of Zones in a State S2 are
shown by dotted lines in Fig. 4.)

It is very important to show the difference between the Zone and its translation in general
case, i.e., to describe which trajectories of the old Zone remain unchanged in the new one, which
trajectories are shortened, as a(1)a(2)a(3)a(4)a(5) in Fig. 2 or a(10)a(11)a(12)a(9) in Fig. 4,
which are not included, i.e., are translated into the empty trajectory e, and finally, what are the new
trajectories of the new Zone. This knowledge for every transition would give us a description of
the change of the Language of Zones.

7. Approaching a Solution of the Problem of Change

A description of the change for the Language of Trajectories is trivial and explicitly follows
from the definition of translations of these languages. For the Translation of Languages of Zones it
is a problem. The study of properties of translations should allow us to give a formal, constructive
solution of the problem relative to the well-known Frame Problem [5-8] for this specific system.
This is the problem of effective description of boundaries between the actual and outdated informa-
tion about the system. This information is updated in the process of search for an optimal
operation. An efficient and constructive description of the hierarchy adjustment is very important
for the design of efficient applications in different fields.

To study this language formally we need some preliminary definitions.

Definition 7.1. An alphabet A(Z) of the string Z of the parameter language L is the set
symbols of this language with given parameter values, where each of these symbols with
parameters is included at least once in a string Z, and e (the empty symbol).

Definition 7.2. A trajectory alphabet TA(Z) of the Zone Z is the set of trajectories from
Lt

H(S) that correspond to the actual parameter values of the alphabet A(Z).

When Complex System moves from one state to another, the corresponding Hierarchy of
Languages is changed by translation. Each language of the hierarchy for one state is translated into
the similar language for another state. A translation of the given language causes a mapping of the
alphabets of strings.

Definition 7.3. Let ∏Mo be a translation of languages of Zones, with πMo(Z1) = Z2. Mapping
of alphabets π o of Zones Z1 and Z2 is the mapping π o: A(Z1) –> A(Z2), which is constructed as
follows. For all the symbols t(p, tj, τ1) from A(Z1)

 π o(t(p, tj, τ1)) = t(p,∏Mo(tj), τ2),

if there exists τ2 ∈ Z+, τ2 > 0, such that t(p,∏Mo(tj), τ2) ∈ A(Z2) – {e};

14

π o(t(p, tj, τ1)) = e
in the remaining cases.

Generally speaking, πo is a not a function because for each symbol from the domain πo can
yield several different values. For example, it can yield empty and non-empty values. We will
introduce constraints for the domain of πo, which allow to consider πo as a function. In particular,
we are going to constrain the domain of πo within the so-called invariant subnet of Zone (see next).

Definition 7.4. In conditions of Definition 7.3 we denote by
Con∏(Z1)={t(pi, ti, τi) ∈ A(Z1)–{e} | C+

∏Mo(TA(Z1)) (∏Mo(ti), ∏Mo(to))=T}
an invariant subnet of Zone Z1 with respect to the translation πMo.

Consider the example of the translation of Zones shown in Fig. 6. After transition Mo =
TRANSITION(q1, 10, 11) trajectories t1 = t(10)t(13)t(14)t(9) and t2 = t(17)t(14) “loose” the C+
connection with the main trajectory to=t(1)t(2)t(3)t(4)t(5). Indeed, ∏Mo(t1) = e and thus can not
be connected with anything while ∏Mo(t2) can be connected with ∏Mo(to) only through ∏Mo(t1)
which is empty. Consequently, the symbols t(q1, t1, τ1) and t(p2, t2, τ2) from A(Z1) are not
included into the invariant subnet of Zone Z1 shown in Fig. 6. Thus Con∏(Z1) should be
considered as a collection of symbols of the alphabet of Zone which trajectories being translated do
not loose the connection with the translation of the main trajectory of this Zone.

Now we are going to introduce a function called timerπ. For every trajectory from the
invariant subnet of Zone Z1 this function should yield a correct value of the “time” (parameter τ)
allocated to the image of this trajectory in the translation of Z1. By comparing this value with the
length of this image we should be able to conclude whether image of this trajectory is included into
the translation of the Zone or not. Negative answer to this question means that the length of the
trajectory image exceeds the time allocated to the motion along it.

Definition 7.5. Let πMo(Z1) = Z2 be a translation, with Z1 =t(po, to, τo)t(p1, t1, τ1)...t(pr, tr,

τr), Z1 ∈ LZ(S1), Z2 ∈ LZ(S2). A mapping
timerπ : Con∏(Z1) –> Z,

where Z is the set of all integer numbers, is constructed as follows. We consider three cases:

(1) If ∏Mo(to) =to’, i.e., the main trajectory of Zone Z1 is shortened, that is transformed
into a substring with an excluded first symbol (according to Definition 10.2),
then for all symbols t(pc, tc, τ) ∈ Con∏(Z1)

timerπ(t(pc, tc, τ)) = τ – 1.

(2) If ∏Mo(tk) =tk’, i.e., some other trajectory tk of Zone Z1 is shortened (k ≠ 0),
then we define timerπ recursively.

(a) timerπ(t(po, to, το)) = τo,

timerπ(t(pi, ti, τi)) = τi (if CTA(Z1)(ti, to) =T)

(b) Let t(pc, tc, τ) ∈ Con∏(Z1),

denote CA(tc) = {ti ∈ Con∏(Z1) | C(tc, ti) = T},

then timerπ(t(pc, tc, τ)) = max {TNEW(ti)}, where
ti ∈ CA(tc)

15

TNEW(t i) =
timer (t(pi ,ti , τi)) − len(pi , t

i
) +1, if t i ≠ tk ,

(timer (t(pi ,ti ,τi)) +1)− len(p i ,ti) +1, if ti = tk ,





(len(pi, ti) is the length of ti).

(3) If ∏Mo(tm) =tm for all tm ∈ TA(Z1), then timerπ(t(pc, tc, τ)) = τ.

2

3

4
57

6

9

10

11
12

q

q

q

q

p

p

13
 15

8

q

 p

14

5

2

1

3
4

2
 1

 1
o

Fig. 5. Interpretation of function timerπ.

Consider example of Zone shown in Fig. 5. In case of Mo = TRANSITION(po, 1, 2) we
have case (1) of Definition 7.5. It means that function timerπ for all the symbols of A(Z1) yields
the value of τ – 1, where τ is the value the third parameter of each symbol. For example,

timerπ(t(q3, tq3
, τ)) = τ – 1, where tq3

 = t(9)t(10)t(11)t(3), τ = 3. It means that after
TRANSITION(po, 1, 2) time allocated to the motion along trajectory tq3

 is less than the length of
this trajectory (2 < 3) and, thus, trajectory tq3

 should not be included into the translation πMo(Z1) of
Zone Z1 (see Theorem 8.1). At the same time for the 2nd negation trajectory tq1

 = t(14)t(15)t(11)

connected with tq3
 timerπ(t(q1, tq1

, 3)) = 2. It means that its length does not exceed the time
allocated for the motion and, consequently, tq1

 should be included into Z2. In spite of loosing the
C+ connection with to through tq3

 (which is not included), trajectory tq1
 keeps the C+ connection

with to through tq2
.

For the same Zone (Fig. 5) consider different transition Mo = TRANSITION(q3, 9, 10)
assuming that it is an opposing side turn. According to Definition 7.5 (2, a) for the main trajectory
timerπ(t(po, to, 4)) = 4, for the 1st negation trajectories timerπ(t(p1, tp1

, 3)) = 3, timerπ(t(q2,

tq2
, 4)) = 4, timerπ(t(q3, tq3

, 3)) = 3, timerπ(t(q4, tq4
, 4)) = 4. Obviously, the lengths of all the

1st negation trajectories here do not exceed values of timerπ for them, i.e., after transition Mo
elements q2, q3, q4 still have enough time for interception of element po. This means that these
trajectories should be included into the translation of the Zone. Now we have to compute the value
of timerπ for the 2nd negation trajectories tq1

 and tp2
 which corresponds to case (2,b) of Definition

7.5. Obviously, for both trajectories CA(tq1
) = CA(tp2

) = {tq2
, tq3

}. Then

16

 timerπ(t(q1, tq1
, 3)) = max{TNEW(tq2

), TNEW(tq3
)},

where TNEW(tq2
) = timerπ(t(q2, tq2

, 4)) – 2 + 1 = 4 – 2 + 1 = 3,

TNEW(tq3
) = (timerπ(t(q3, tq3

, 3)) + 1) – 3 + 1 = (3 + 1) – 3 + 1 = 2.

Consequently, timerπ(t(q1, tq1
, 3)) = 3. Thus while the length of tq1

 does not exceed the value of
timerπ (2 < 3) it should be included into the translation.

Case (3) of Definition 7.5 takes place when transition is executed along the trajectory of some
Zone Z’ different from Z1. It means that time allocation in Zone Z1 should not be changed.

The following constructive definition actually gives us an algorithm for the computation of
function πo (see Theorem 8.1).

Definition 7.6. On conditions of Definition 7.3 the following set
∏(Con∏(Z1)) ={t(pi, ∏Mo(ti), timerπ(t(pi, ti, τi))) | t(pi, ti, τi) ∈ Con∏(Z1)}

is called a net image of Zone Z1 with respect to translation π.

8. Theorem about Translations

THEOREM 8 .1 . Let, for a translation πMo(Z1) = Z2, where for all symbols t(p1, t1, τ1) ∈ A(Z2)

– ∏(Con∏(Z1)) and t(p2, t2, τ2) ∈ ∏(Con∏(Z1)), the relation CTA(Z2)(t2, t1) does not hold, i.e.,

CTA(Z2)(t2, t1)=F. Then for every symbol t(p, ti, τ) ∈ Con∏(Z1), (where ti ∈ tp(x, y, l), l > 1)

πo(t(p, ti, τ)) = t(p, ∏Mo(ti), timerπ(t(p, ti, τ)))

is a mapping onto A(Z2)∩∏(Con∏(Z1)), if and only if l ≤ timerπ(t(p, ti, τ)).

PROOF. Let Z1 = t(po, to, το)t(p1, t1, τ1)...t(pr1
, tr1

, τr1
). We consider three cases according to

Definition 7.5.

1. Let ∏Mo(to) = to’, i.e., the main trajectory of Zone Z1 is shortened by exclusion of the
first symbol, then we shall prove that for any symbol t(pi, ti, τi) ∈ Con∏(Z1)

πo(t(pi, ti, τi)) = t(pi, ∏Mo(ti), τi – 1)

if and only if the length of trajectory ti l ≤ τi – 1.
 We denote ti’ = ∏Mo(ti). Obviously, ti’ = ti for all ti ≠ to. Consider the Grammar of Zones
GZ (Tables 1, 2). Next we are going to generate both Zones Z1 and Z2 simultaneously and
independently of each other. In order to distinguish each of these derivations and compare the
results, we will use Z1 and Z2 as indices of expressions derived in these grammars, where
necessary.

We have to prove two statements. The direct statement is as follows: for any symbol t(pi, ti,
τi) ∈ Con∏(Z1) such that l ≤ τi – 1 symbol t(pi, ∏Mo(ti), τi – 1) belongs to A(Z2). The reverse

statement requires that for every symbol t(pi, ti’, τi’) from A(Z2)∩∏(Con∏(Z1)) there exist symbol

t(pi, ti, τi’+ 1) ∈ Con∏(Z1) such that l ≤ τi’ and ∏Mo(ti) = ti’.

Let us prove the direct statement. We are going to conduct this proof by induction.
The basis of the induction is as follows. Consider symbols t(pi, ti, τi) ∈ Con∏(Z1) for which

CTA(Z1)(ti, to) = T, i.e., the 1-st negation trajectories. Obviously, in this case CTA(Z2)(ti’, to’) = T,
where ti’= ∏Mo(ti) = ti, except for the trajectories with the end coincided with the beginning of the

17

main trajectory. The last ones, obviously, are not included into Con∏(Z1). Assume that
 τi – 1 = timerπ(t(pi, ti, τi)) ≥ len(pi, ti). (8.1)

Let us prove that symbol t(pi, ti, timerπ(t(pi, ti, τi))) will be generated by the grammar GZ in a
state S2 and attached to Zone Z2.

Indeed, the maximum length of trajectories ti to be the parameter value of the attaching
symbol is determined by the value of function f(u, v) in production 3 (Table 1). This length is
determined by the value of the third parameter of function f(u, v) which in this case is as follows
(Table 2):

f(u, v) = (1, y + 1, TIME(y + 1) * vy+1).
 Points y + 1 are the ending points of prospective 1-st negation trajectories and, thus, belong to
P(to) – {yo}. The values of TIME were computed by application of production 2i (section πn).

From the expression for the kernel of the production 2i, it follows that τo =lo+1 for the

terminal symbol t(po, to, τo) = t(hi
o(xo, yo, lo), τo). In such case πo(t(po, to, τo)) = t(hi

o(x1, yo,

lo – 1), τo’), with τo’ = lo + 1. Consider the following main trajectory of the Zone
to = a(yo)a(y1)...a(yl) and its image to’ = a(xo)a(x1)...a(xl-1). Let us take into account that P(to’)

= {x ∈ X | DIST(x, po, to’) < 2n} and mapping ∏Mo causes the following one-to-one

correspondence between P(to) – {yo} and P(to’):
xi = yi+1

for i = 1, 2,..., l – 1. Then from the section πn of production 2i it follows that
TIMEZ2

(xi) = DIST(xi, po, to’) =i + 1= [(i + 1) + 1] – 1 = DIST(yi+1 , po, to) = TIMEZ1
(yi+1) –1

 Consequently, for each point x ∈ P(to) – {yo}
TIMEZ2

(x) = TIMEZ1
(x) – 1. (8.2)

At the same time TIME(x) determines the value of parameter τi of each symbol t(pi, ti, τi); this

follows from production 4j. Consequently, TIMEZ1
(x) = τi, and taking (8.2) into account, we

obtain
TIMEZ2

(x) = TIMEZ1
(x) – 1 = τi – 1 = timerπ(t(pi, ti, τi)) ≥ len(pi, ti). (8.3)

Hence, trajectories ti of the length len(pi, ti) will be generated by GZ and corresponding symbols
t(pi, ti, τ’) will be attached to Zone Z2. The only question to be answered is the question of the

value of parameter τ’. It was shown above that τ’ is determined by the value of TIMEZ2
(x) in

production 4j. According to (8.3),
 τi’ = TIMEZ2

(x) = TIMEZ1
(x) – 1 = τi – 1 = timerπ(t(pi, ti, τi)),

and our statement about 1-st negation trajectories is proved:
t(pi, ti, timerπ(t(pi, ti, τi))) ∈ A(Z2).

The basis of induction is proved by the preceding.
Assume that for all the m-negation trajectories tm m < mo and t(pm, tm, τm), the statement of

Theorem 8.1 (1) is true.
Let tmo

 is an arbitrary mo-negation trajectory, t(p, tmo
, τ) ∈ Con∏(Z1). According to

condition of Theorem 8.1 πo(t(p, tmo
, τ)) = t(p, ∏Mo(tmo

), timerπ(t(p, tmo
, τ))). Assume also

that
len(p, tmo

) ≤ timerπ(t(p, tmo
, τ)). (8.4)

We are going to prove that symbol t(p, ∏Mo(tmo
), timerπ(t(p, tmo

, τ))) will be generated by the
grammar GZ in a state S2 and attached to Zone Z2.

From Definition 7.2 and 7.5 it follows that ∏Mo(tmo
) = tmo

, timerπ(t(p, tmo
, τ)) = τ – 1. Let

18

us show that t(p, tmo
, τ – 1) ∈ A(Z2).

The maximum length of trajectory tmo
 to be included into Z2 as a parameter value of the

attaching symbol, is determined by the value of function f(u, v) in production 3 (Table 1). This
length is determined by the value of the third parameter of function f(u, v) which in this case is as
follows (Table 2):

f(u, v) = (1, y + 1, TIME(y + 1) * vy+1).
Points y+1 are the parameter values of the (mo–1) negation trajectories. Values of TIME(y) are
assigned by applying production 5 (section πn, Table 1). This application happens each time when
generation of current negation is completed. Last application of production 5 took place when
generation of (mo–1)st negation trajectories was completed. Thus, values of NEXTTIME were
assigned to TIME. Values of NEXTTIME(z) were computed during earlier applications of
productions 4j for attaching symbols with (mo–1) negation trajectories.

Let m = mo – 1. Consider the generation of symbol t(pm, tm, τ2’) with trajectory tm ∈ tpm
(xo,

xe, lm). Thus, applying formula πn of production 4j for u = (xo, xe, lm), we obtain
NEXTTIME (xi) = ALPHA(xi, pm, tm, TIME(xe) – lm+ 1).

Consequently, for y ∈ P(tm)
NEXTTIMEZ2

(y) = (8.5)
ALPHAZ2

(y, hj (xo, xe, lm), TIMEZ2
(xe) – lm + 1) =

max(NEXTTIMEo
Z2

(y), TIMEZ2
(xe) – lm + 1) =

max(NEXTTIMEo
Z2

(y), τ2’ – lm + 1),
where NEXTTIMEo

Zi
(y) are the values of function NEXTTIME(y) before current application of

production 4j in the derivation of Z2.
Trajectory tm is m-negation trajectory with m < mo. On condition of the theorem, for all

symbols t(p1, t1, τ1) ∈ A(Z2) – ∏(Con∏(Z1)) and t(p2, t2, τ2) ∈ ∏(Con∏(Z1)) CTA(Z2)(t2, t1) =

F. This means that for any trajectory t ∈ ΤΑ(Ζ2) such that CkTA(Z2)(tmo
, t), t(p, t, τ) ∈

∏(Con∏(Z1)). According to the assumption of induction and Definition 7.5 (1)
τ2’ – lm + 1 = timerπ(t(pm, tm, τ2)) – lm + 1= (τ2 – 1) – lm + 1. (8.6)

The value of NEXTTIMEo
Z2

(y) was computed by successive application of production 4j for

attaching symbols with trajectories ti containing y among parameter values, i.e., y ∈ P(ti).
An example of such situation is shown in Fig. 5. Trajectory tq1

 can be considered as
trajectory tmo

, i.e., 2nd negation trajectory. Trajectory tq2 (as tm) is the 1st negation trajectory such
that C(tq1

, tq2
) through point y = 11. The other trajectory “crossing” the same point is tq3

. Assume
that tq3

 was computed and attached to the Zone earlier than tq2
. Consequently, tq3

 is one of the
trajectories ti, which we are going to consider.

Thus, taking into account that such trajectories are of r negation, r < mo, we conclude that
assumption of induction is true for them. Considering contribution to computation of
NEXTTIMEo

Z2
(y) from each trajectory ti (during application of production 4j), we obtain:

NEXTTIMEo
Z2

(y) = max{τi’ – li + 1 }= (8.7)
ti ∈ CT(m–1)

max{timerπ(t(pi, ti, τi)) – li + 1}=
ti ∈ CT(m–1)

 max{(τi – 1) – li + 1 }
ti ∈ CT(m–1)

where CT(r) = {ti ∈ CACon∏(Z1)(tmo
), i ≤ r}. Then, provided (8.5), (8.6) and (8.7), we obtain

19

 NEXTTIMEZ2
(y) =

max(max{(τi – 1) – li + 1 }, (τ2 – 1) – lm + 1) =
ti ∈ CT(m–1)

max([max{τi – li + 1}] – 1, [τ2 – lm + 1] – 1) =
ti ∈ CT(m–1)

max(NEXTTIMEo
Z1

(y) – 1, ((TIMEZ1
(xe) – 1) – lm + 1) =

ALPHAZ1
(y, hj (xo, xk, lm), TIMEZ1

(xe) – lm + 1) – 1 =
NEXTTIMEZ1

(y) – 1,
Hence,

NEXTTIMEZ2
(y) = NEXTTIMEZ1

(y) – 1, (8.8)

As we know from production 4j TIME(x) determines the value of parameter τ of each

symbol, in particular, t(p, tmo
, τ). Consequently, TIMEZ1

(x) = τ, and, taking (8.8) into account,
we obtain

TIMEZ2
(x) =NEXTTIMEZ2

(x) = NEXTTIMEZ1
(x) – 1 = TIMEZ1

(x) – 1 =

τ – 1 = timerπ(t(p, tmo
, τ)) ≥ len(p, tmo

). (8.9)
Hence, trajectory tmo

 of the length len(p, tmo
) will be generated by GZ and corresponding symbol

t(pi, ti, τ’) will be attached to Zone Z2. Now we have to determine the value of parameter τ’.

Obviously, τ’ is determined by the value of TIMEZ2
(x) in production 4j. According to (8.9),

 τ’ = TIMEZ2
(x) = TIMEZ1

(x) – 1 = τ – 1 = timerπ(t(p, tmo
, τ)),

and our statement about mo-negation trajectories is proved: t(p, tmo
, τ – 1)∈ A(Z2)∩∏(Con∏(Z1)).

Thus, by induction the general direct statement is proved.

Let us prove the reverse statement. Analogously, we conduct this proof by induction. For
brevity we show only a general outline of this proof.

The basis of the induction is as follows. Consider an arbitrary 1-st negation trajectory ti’ and
a corresponding symbol t(pi, ti’, τi’) ∈ A(Z2)∩∏(Con∏(Z1)). Let us show that there exists a 1-st

negation trajectory ti such that t(pi, ti, τi) ∈ Con∏(Z1), where ti = ti’, τi = τi’+ 1, and

 timerπ(t(pi, ti, τi) = τi – 1, timerπ(t(pi, ti, τi)) ≥ len(pi, ti). (8.10)

Consider trajectory ti = ti’. Let us prove that symbol t(pi, ti, τi’+ 1) will be generated by the
grammar GZ in a state S1 and attached to Zone Z1.

Analogously with the proof of direct statement, the maximum length of trajectories ti to be the
parameter value of the attaching symbol is determined by the value of function f(u, v) in
production 3 (Table 1). This length is determined by the value of the third parameter of function
f(u, v) which in this case is as follows (Table 2):

f(u, v) = (1, y + 1, TIME(y + 1) * vy+1).
 Points y + 1 are the ending points of prospective 1-st negation trajectories and, thus, belong to
P(to) – {yo}. According to (8.2) for each point x ∈ P(to) – {yo} TIMEZ1

(x) = TIMEZ2
(x) + 1. At

the same time TIME(x) determines the value of parameter τi’ for each symbol t(pi, ti, τi’); it

follows from production 4j. Consequently, TIMEZ2
(x) = τi’, and taking into account, that ti is

included into Z2 we obtain
 TIMEZ2

(x) ≥ len(pi, ti).
Thus,

TIMEZ1
(x) = TIMEZ2

(x) + 1 = τi’ + 1 ≥ len(pi, ti) (8.11)
Hence, the trajectories ti of the length len(pi, ti) will be generated by GZ and corresponding

20

symbols t(pi, ti, τ) will be attached to Zone Z1. The only question to be answered is the question

of the value of parameter τ. As we know τ is determined by the value of TIMEZ1
(x) in production

4j. According to (8.11),
 τi = TIMEZ1

(x) = TIMEZ2
(x) + 1 = τi’+ 1,

consequently,
timerπ(t(pi, ti, τi) = τi – 1, timerπ(t(pi, ti, τi)) ≥ len(pi, ti),

and our statement about 1-st negation trajectories is proved: t(pi, ti, τi))) ∈ Con∏(Z1).
The basis of induction is proved by the preceding.
Assume that for all the m-negation trajectories tm m < mo and t(pm, tm’, τm’) from A(Z2), the

statement of Theorem 8.1 (1) is true.
Let tmo

 is an arbitrary mo negation trajectory, t(p, tmo
’, τ’) ∈ A(Z2). Let us show that there

exists mo- negation trajectory tmo
 such that t(pi, tmo

, τ) ∈ Con∏(Z1), where tmo
 = tmo

’, τ = τ’+ 1,
and
 timerπ(t(p, tmo

, τ) = τ – 1, timerπ(t(p, tmo
, τ)) ≥ len(p, tmo

) (8.12)

Consider trajectory tmo
 = tmo

’. Let us prove that symbol t(p, tmo
, τ’+ 1) will be generated by

the grammar GZ in a state S1 and attached to Zone Z1. Then we shall prove (8.12).
The maximum length of trajectories tmo

 to be included into Z1, i.e., to be the parameter value
of the attaching symbol, is determined by the value of function f(u, v) in production 3 (Table 1).
This length is determined by the value of the third parameter of function f(u, v), which in this case
is as follows (Table 2):

f(u, v) = (1, y + 1, TIME(y + 1) * vy+1).
Points y+1 are the parameter values of the (mo– 1)st negation trajectories. Values of TIME(y) are
assigned by applying production 5 (section πn, Table 1). This application happens each time when
generation of current negation is completed. Last application of production 5 took place when
generation of (mo–1)st negation trajectories was completed. Thus, values of NEXTTIME were
assigned to TIME. The values of NEXTTIME were computed in the course of earlier applications
of productions 4j for attaching symbols with (mo–1)st negation trajectories.

Let m = mo – 1. Consider the generation of symbol t(pm, tm, τ2) ∈ Con∏(Z1) with trajectory

tm ∈ tpm
(xo, xk, lm). Thus, applying formula πn of production 4j for u = (xo, xk, lm), y ∈ P(tm),

we obtain
NEXTTIME (xi) = ALPHA(xi, pm, tm, TIME(xk) – l + 1).

Analogously to the proof of direct statement it is easy to show (basing on the assumption of
induction) that on condition of reverse statement, (8.8) holds as well. As we know, TIME(x)
determines the value of parameter τ’ for each symbol t(p, tmo

, τ’); it follows from production 4j.

Consequently, TIMEZ2
(x) = τ’, and taking into account, that tmo

 is included into Z2 we obtain
 TIMEZ2

(x) ≥ len(p, tmo
).

Thus, according to (8.8)
TIMEZ1

(x) = TIMEZ2
(x) + 1 = τ’ + 1 ≥ len(p, tmo

) (8.13)
Hence, trajectory tmo

 of the length len(p, tmo
) will be generated by GZ and corresponding symbol

t(p, tmo
, τ) will be attached to Zone Z1. The only question to be answered is the question of the

value of parameter τ. As we know the value of τ is determined by the value of TIMEZ1
(x) as well

as τ’ is determined by the value of TIMEZ2
(x) (in production 4j). According to (8.13),

 τ = TIMEZ1
(x) = TIMEZ2

(x) + 1 = τ’+ 1,
consequently,

21

timerπ(t(p, tmo
, τ) = τ – 1, timerπ(t(p, tmo

, τ)) ≥ len(p, tmo
),

and our statement about mo negation trajectories is proved: t(pi, ti, τi))) ∈ Con∏(Z1). Thus, by
induction the general reverse statement is proved.
 Theorem 8.1(1) is proved.

2 . Let ∏Mo(tk) =tk’, i.e., the non-main trajectory tk of Zone Z1 is shortened by exclusion of
the first symbol, then we shall prove that for any symbol t(pi, ti, τi) ∈ Con∏(Z1)

πo(t(pi, ti, τi)) = t(p, ∏Mo(ti), timerπ(t(p, ti, τi)))

if and only if the length of trajectory ti l ≤ timerπ(t(p, ti, τi)).
 We denote ti’ = ∏Mo(ti). Obviously, ti’ = ti for all ti ≠ tk. As in case 1 we have to prove two
statements. The direct statement is as follows: for any symbol t(pi, ti, τi) ∈ Con∏(Z1) such that l ≤
timerπ(t(p, ti, τi)) symbol t(pi, ∏Mo(ti), timerπ(t(p, ti, τi))) belongs to A(Z2). The reverse

statement requires that for every symbol t(pi, ti’, τi’) from A(Z2)∩∏(Con∏(Z1)) there exists

symbol t(pi, ti, τi) ∈ Con∏(Z1) such that ∏Mo(ti) = ti’, timerπ(t(p, ti, τi)) = τi’ and l ≤ τi.

Let us prove the direct statement. We are going to conduct this proof by induction.
The basis of the induction is as follows. Consider symbols t(pi, ti, τi) ∈ Con∏(Z1) for which

CTA(Z1)(ti, to) = T, i.e., the 1-st negation trajectories. Obviously, in this case CTA(Z2)(ti’, to’) = T,
where ti’= ∏Mo(ti) = ti, except for the case when tk is one of the 1-st negation trajectories.
According to Definition 7.5 (2, a) τi = timerπ(t(pi, ti, τi)). Assume that

 τi = timerπ(t(pi, ti, τi)) ≥ len(pi, ti). (8.14)

Let us prove that symbol t(pi, ti’, timerπ(t(pi, ti, τi))) will be generated by the grammar GZ in a
state S2 and attached to Zone Z2.

Indeed, the maximum length of trajectories ti’ to be the parameter value of the attaching
symbol is determined by the value of function f(u, v) in production 3 (Table 1). This length is
determined by the value of the third parameter of function f(u, v) which in this case is as follows
(Table 2):

f(u, v) = (1, y + 1, TIME(y + 1) * vy+1).
 Points y + 1 are the ending points of prospective 1-st negation trajectories and, thus, belong to
P(to). The values of TIME were computed by application of production 2i (section πn).

From the expression for the kernel of the production 2i, it follows that τo =lo+1 for the

terminal symbol t(po, to, τo) = t(hi o (xo, yo, lo), τo). In such case πo(t(po, to, τo)) = t(hi o (x1, yo,

lo – 1), τo’), with τo’ = lo + 1. Consider the following main trajectory of the Zone to =
a(yo)a(y1)...a(yl) and its image to’ = a(xo)a(x1)...a(xl). Obviously, to = to‘. Let us take into

account that P(to’) = {x ∈ X | DIST(x, po, to’) < 2n} and mapping ∏Mo causes the following

one-to-one correspondence between P(to) and P(to’):
xi = yi

for i = 0, 1,..., l . Then from the section πn of production 2i it follows that
TIMEZ2

(xi) = DIST(xi, po, to’) = DIST(yi, po, to) = TIMEZ1
(yi)

 Consequently, for each point x ∈ P(to)
TIMEZ2

(x) = TIMEZ1
(x). (8.15)

At the same time TIME(x) determines the value of parameter τi of each symbol t(pi, ti, τi); this

follows from production 4j. Consequently, TIMEZ1
(x) = τi, and taking (8.15), (8.14) into

22

account, we obtain
TIMEZ2

(x) = TIMEZ1
(x) = τi = timerπ(t(pi, ti, τi)) ≥ len(pi, ti). (8.16)

Consider trajectories ti’ of the length len(pi, ti’). Obviously, if ti = ti‘ these trajectories will be
generated by GZ in a state S2 and corresponding symbols t(pi, ti, τ’) will be attached to Zone Z2.
In case of the shortening trajectory tk we come to the same conclusion because tk and tk’ have the
same end, and len(pi, tk) > len(pi, tk’). The only question to be answered is the question of the
value of parameter τ’. It was shown above that τ’ is determined by the value of TIMEZ2

(x) in
production 4j. According to (8.16),

 τi’ = TIMEZ2
(x) = TIMEZ1

(x) = τi = timerπ(t(pi, ti, τi)),
and our statement about 1-st negation trajectories is proved:

t(pi, ti, timerπ(t(pi, ti, τi))) ∈ A(Z2)∩∏(Con∏(Z1)).
The basis of induction is proved by the preceding.
Assume that for all the m negation trajectories tm m < mo and t(pm, tm, τm), the statement of

Theorem 8.1 (2) is true.
Let tmo

 is a mo negation trajectory, t(p, tmo
, τ) ∈ Con∏(Z1). According to condition of

Theorem 8.1 πo(t(p, tmo
, τ)) = t(p, ∏Mo(tmo

), timerπ(t(p, tmo
, τ))). Assume also that

len(p, tmo
) ≤ timerπ(t(p, tmo

, τ)). (8.17)

We are going to prove that symbol t(p, ∏Mo(tmo
), timerπ(t(p, tmo

, τ))) will be generated by the
grammar GZ in a state S2 and attached to Zone Z2.

Obviously, ∏Mo(tmo
) = tmo

 if tmo
 = tk, otherwise ∏Mo(tk) = tk’(shortened). From Definitions

7.2 and 7.5 (2,b) it follows that the value of timerπ(t(p, tmo
, τ)) is computed recursively. Let us

show that
t(p, ∏Mo(tmo

), timerπ(t(p, tmo
, τ))) ∈ A(Z2)∩∏(Con∏(Z1)).

As we know the maximum length of a trajectory to be included into Z2 is determined by the
value of function f(u, v) in production 3 (Table 1). This length is determined by the value of the
third parameter of function f(u, v) which in this case is as follows (Table 2):

f(u, v) = (1, y + 1, TIME(y + 1) * vy+1).
Points y+1 are the parameter values of the (mo–1)st negation trajectories. Values of TIME are
assigned by applying production 5 (section πn, Table 1). This application happens each time when
generation of current negation is completed. Last application of production 5 took place when
generation of (mo–1)st-negation trajectories was completed. Thus, values of NEXTTIME were
assigned to TIME. Values of NEXTTIME(z) were computed in the course of earlier applications of
productions 4j for attaching symbols with (mo–1) negation trajectories.

Let m = mo – 1. Consider the generation of symbol t(pm, ∏Mo(tm), τ2’) with trajectory

∏Mo(tm) ∈ tpm
(xo, xe, lm’). Obviously, ∏Mo(tm) = tm, if tm ≠ tk. Let us apply formula πn of

production 4j for u = (xo, xe, lm):
NEXTTIME (xi) = ALPHA(xi, pm, tm, TIME(xe) – lm+ 1).

Consequently, for y ∈ P(tm)
NEXTTIMEZ2

(y) = (8.18)
ALPHAZ2

(y, hj (xo, xe, lm), TIMEZ2
(xe) – lm’ + 1) =

max(NEXTTIMEo
Z2

(y), TIMEZ2
(xe) – lm’ + 1) =

max(NEXTTIMEo
Z2

(y), τ2’– lm’ + 1),
where NEXTTIMEo

Z2
(y) are the values of function NEXTTIME(y) before current application of

production 4j in the derivation of Z2.
Trajectory tm is m negation trajectory with m < mo. According to Definition 7.5 (2) and

23

assumption of the induction if tm ≠ tk (lm’ = lm)
τ2’– lm’ + 1 = timerπ(t(pm, tm, τ2)) – len(pm, tm) + 1= TNEW(tm).

If tm = tk, i.e., lk’ = len(pm, ∏Mo(tm)) = lk – 1,
τ2’– lk’ + 1 = (τ2’+1) –lk + 1 = timerπ(t(pk, tk, τ2)) – len(pk, tk) + 1 = TNEW(tk).

Thus, in all cases
 τ2’– lm’ + 1 = TNEW(tm). (8.19)

Analogously, it is easy to show that
NEXTTIMEo

Z2
(y) = max{TNEW(ti)}, where CT(r) = {ti ∈ CACon∏(Z1)(tmo

), i ≤ r}. (8.20)
ti ∈ CT(m–1)

Indeed, trajectories ti from Con∏(Z1) as well as ∏Mo(ti) from ∏(Con∏(Z1)) are r negation
trajectories with r < mo, so the assumption of induction is true for them. Then, provided (8.18),
(8.19) and (8.20) we obtain
max(NEXTTIMEo

Z2
(y), τ2’– lm’ + 1) = (8.21)

max(max{TNEW(ti)}, TNEW(tm)) =
ti ∈ CT(m-1)

max{TNEW(tj)}.
tj ∈ CT(m)

Finally, combining (8.18) and (8.21), we have
NEXTTIMEZ2

(y) = max{TNEW(ti)} = timerπ(t(p, tmo
, τ)), (8.22)

ti ∈ CA(tmo
)

For computation and attaching tmo
 we go to the next, mo negation. Consequently, taking (8.22)

into account, we obtain
TIMEZ2

(x) = NEXTTIMEZ2
(x) = (8.23)

timerπ(t(p, tmo
, τ)) ≥ len(p, tmo

) ≥ len(p, ∏Mo(tmo
)).

Hence, trajectory ∏Mo(tmo
) of the length len(p, ∏Mo(tmo

)) will be generated by GZ and

corresponding symbol t(p, ∏Mo(tmo
), τ’) will be attached to Zone Z2. Now we have to determine

the value of parameter τ’. Obviously, τ’ is determined by the value of TIMEZ2
(x) in production 4j.

According to (8.23),
 τ’ = TIMEZ2

(x) = timerπ(t(p, tmo
, τ)),

and our statement about mo negation trajectories is proved:
t(p, ∏Mo(tmo

), timerπ(t(p, tmo
, τ))) ∈ A(Z2)∩∏(Con∏(Z1)).

Thus, by induction the general direct statement is proved.
The reverse statement can be proved by induction analogously with the proof of reverse

statement in case 1.

3 . ∏Mo(ti) = ti for all ti ∈ TA(Z1). The proof is obvious.
Theorem 8.1 is proved.

Theorem 8.1 gives a partial solution of the Frame Problem for the Hierarchy of Languages.
In the next Sections an example of the robot control model for the Air Force vehicles will

be considered. Employing this example we are going to show in detail the generating of the
Language of Zones and Translations.

9. An Example of Generating Techniques

Consider the Grammar of Zones (Tables 1, 2). This is a controlled grammar [33, 34]. Such

24

grammars operate as follows. The initial permissible set of productions consists of the production
with label 1. It should be applied first. Let us describe the application of a production in such
grammar. Suppose that we attempt to apply production with label l to rewrite a symbol A . We
choose the leftmost entry of symbol A in the current string and compute the value of predicate Q,
the condition of applicability of the production. If the current string does not contain A or Q =F,
then the application of the production is ended, and the next production is chosen from the failure
section FF ; FF becomes the current permissible set. If the current string does contain the symbol
A , it is replaced by the string in the right side of the production; we carry out the computation of
the values of all formulas either standing separately (from section πn) or corresponding to the
parameters of the symbols (πk), and the parameters assume new values thus computed. Then,
application of the production is ended, and the next production is chosen from the success section
FT, which is now the current permissible set. If the applicable section is empty, the derivation
halts.

Let us return to the robot control model shown in Fig.1, 3. We are going to apply grammar
of Zones (shown in Table 1, 2) for generating trajectory network language for this model.

Let us generate the Language of Zones. Here we identify points of X with their ordinal
numbers; thus, a1 corresponds to 1, a2 to 2, etc., h8 corresponds to 59 (g3, g4, d5, e6, f7 are
excluded). We shall use both notations, algebraic and numerical, where it is convenient.

Let us apply grammar GZ (Tables 1, 2) for different values of u. Production 1 is applicable
for u = (h5, h1, 4) = (39, 8, 4), l = lo = 4 because

Q1(u) =(ON(BOMBER)=h5) ^ (MAPh5,BOMBER(h1) ≤ 4 ≤ 4) ^ ((ON(TARGET)=h1) ^

(χ(BOMBER, TARGET)=0)) = T.
Thus,

S (u, zero, zero) 1=> A(u, zero, zero)
and FT = two is a permissible set. Therefor, next we have to apply one of the productions
2i ∈ two. Q2(u) is always true, so

A(u, zero, zero) 2i=> t(hio(u), 5) A((0, 0, 0), g(hio(u),zero),zero)
In order to compute hio(u) we have to generate all the shortest trajectories from h5 to h1 for the
robot BOMBER. The length of these trajectories should be less or equal l = 4.

TRACKSBOMBER = {BOMBER} x (∪ L[Gt (1)(h5, h1, k, BOMBER)].
1≤k≤4

According to the grammar of trajectories Gt
(1) [31-33] only one such trajectory t1 exists, and it is

generated by this grammar :
tB = a(h5)a(h4)a(h3)a(h2)a(h1).

Thus, TRACKS ={(BOMBER, tB)}, the number of trajectories b =1 and h1o(u) =(BOMBER,tB).
In that way we generated the main trajectory of the Zone:

t(BOMBER, tB, 5).
Next we have to compute g(h1o(u),zero) = g (BOMBER, tB, zero). According to Table 2,

for all r ∈ X the r-th component of function g is as follows:

gr(BOMBER,tB , zero) =
1, if DIST(r,BOMBER,tB) < 118,

0, if DIST(r,BOMBER,tB) = 118,




The value of the function DIST (x, BOMBER, tB) = k+1, where k is the number of symbol of
the trajectory tB, whose parameter value equals x. Consequently

 DIST (h4, BOMBER, tB) = 2, DIST (h3, BOMBER, tB) = 3
DIST (h2, BOMBER, tB) = 4, DIST (h1, BOMBER, tB) = 5

For the rest of x from X DIST (x, BOMBER, tB) = 2 x 62 =124. Thus for r ∈ {h1, h2, h3, h4}
= {8, 16, 23, 30} gr(BOMBER, tB, zero) = 1, for the rest of r gr= 0.

Now we can complete application of production 21:

25

A(u, zero, zero) => t(BOMBER, tB, 5)A((0, 0, 0), g (BOMBER,tB,zero), zero).
Non-kernel functional formula from πn remains for computation:

TIME(z) = DIST(z, BOMBER, tB).
Symbol “=“ in these formulas should be considered as an assignment, i.e., the current value of the
right side expression should be assigned to the left side. The computation of DIST(z, BOMBER,
tB) for all z from X has been performed above, so TIME(z) equals 124 for all z ∈ X except {h1,
h2, h3, h4}, where TIME(z) equals 5, 4, 3, 2, respectively.

1
1

1

1 5

4

3

2

Fig. 6. A representation of values of v (left) and TIME(z) (right) after generating trajectory
a(h5)a(h4)a(h3)a(h2)a(h1).

 Values of function g and, consequently, values of the components of vector v (Fig. 6, left),
different from zero, mark ending points of prospective trajectories of robots from P1 that could
intercept motion of BOMBER along the main trajectory: points h1, h2, h3, h4. Values of TIME
(Fig. 6, right) for the same points designate maximum lengths of those prospective trajectories.
According to Definition 4.5 these trajectories are the 1-st negation trajectories. Points h1, h2, h3,
h4 are considered as targets by the other side, P2, as well. It means that the grammar should
generate trajectories of robots (if they exist) which could support motion of BOMBER by
preventing its interception, the so-called own trajectories. By definition of the Grammar of Zones
(Table 1, predicate Q4) the length of such trajectories is restricted by 1. Obviously, there are no
own trajectories in the problem shown in Fig. 3.

Let us continue derivation of Zone. Production 21 was applied successfully, so we have to
go to the production with label 3 and try to apply it to the left-most entry of nonterminal A . This
production is applicable because Q3 ((0, 0, 0)) = (0 ≠ 59) ^ (0 ≠ 59). Thus,

t(BOMBER, t1, 5)A((0, 0, 0), v, zero) 3=>t(BOMBER, t1, 5) A(f ((0, 0, 0), v), v, zero).
Next we have to compute value of the function f . According to Table 2 for u = (x, y, l) = (0, 0, 0)
and vy+1 =v1 = 0:

f(u, v) = (1, y+1, TIME(y+1) * vy+1) = (1, 1, 0).
Therefor,

3=>t(BOMBER, tB, 5) A((1, 1, 0), v, zero)
It remains to compute values of the functional formula from πn.

NEXTTIME(z) = init((0, 0, 0), NEXTTIME(z)) = 2n = 118 for all z from X.
Application of the production 3 was successful so next we have to apply one of the productions 4j
to the left-most entry of the nonterminal A(u, v, w). Here u = (x, y, l) =(1, 1, 0), i.e., l = 0 and
consequently Q4 = F. Thus, productions 4j cannot be applied, so FF is a permissible set here and
we have to go back to the production 3.

We try to apply production to the nonterminal A(u, v, w) with u = (x, y, l) =(1, 1, 0), v
shown in Fig. 6(left), and w = zero. Obviously, Q3(1, 1, 0) = T, and this production is
applicable:

3=>t(BOMBER, tB, 5) A(f ((1, 1, 0), v), v, zero).

26

As far as (l =0) ^ (y =1) and vy+1 = v2 = 0,
f(u, v) = (1, y+1, TIME(y+1) * vy+1) = (1, 2, 0).

Therefor,
3=>t(BOMBER, tB, 5) A((1, 2, 0), v, zero)

A computation of function NEXTTIME takes place as follows:
NEXTTIME(z) = init((1, 1, 0), NEXTTIME(z)).

To prevent misunderstanding we have to remind that symbol “=“ here means that value of the right
side should be assigned to the left side, i.e., the new values of NEXTTIME are computed basing
on the current values. Thus,

 NEXTTIME(z) = 118 for all z from X.
Application of the production 3 was successful so next again we will try to apply one of the
productions 4j. But Q4(1, 2, 0) = F, and again we have to go back to production 3. Q3(1, 2, 0)
= T, this production is applicable, and this loop continues until u changes either way:

l = TIME(y+1) * vy+1 ≠ 0 or y = 118.
In our case v7+1 = 1 (≠ 0). Thus, the 8-th application of production 3 will result in the following
string:

3=>t(BOMBER, tB, 5) A((1, 8, 5), v, zero)
because for u = (1, 7, 0) y+1 corresponds to h1, TIME(y+1) * vy+1 = TIME(h8) * 1 = 5.

This means that point h1 is determined as the ending point for generating trajectories of
robots which intercept motion of the BOMBER. The following derivation steps would allow us to
find possible starting points of such trajectories.

The next attempt of applying production 4j will result in failure because there no robots at
point x = 1, i.e., at point a1, and Q4(1, 8, 5) = F. Again we return to production 3 but with l > 0
and x ≠ 59. This means the beginning of a new loop, which consists of multiple applications of
production 3 after failures of attempts to apply one of productions 4j .

3=>t(BOMBER, tB, 5) A((2, 8, 5), v, zero)
3=>t(BOMBER, tB, 5) A((3, 8, 5), v, zero)

.
3=>t(BOMBER, tB, 5) A((42, 8, 5), v, zero)

With u = (42, 8, 5) this loop will be terminated because
 Q4(42, 8, 5) = (ON(FIGHTER) = 44) ^ (5 > 0) ^ (χ(BOMBER, FIGHTER) = 0) ^

(MAPf6,FIGHTER(h1) = 5) = T
which means that productions 4j are applicable. These productions will generate intercepting
trajectories from f6 to h1.

4j=>t(BOMBER, tB, 5)t(hj(42, 8, 5), TIME(8))A((42, 8, 5), v, g(hj(42, 8, 5), zero))
In order to compute hj(42, 8, 5) we have to generate all the shortest trajectories from point f6 to h1
for robot FIGHTER (Table 2). The length of these trajectories should be less or equal l = 5.

TRACKSFIGHTER = {FIGHTER} x (∪ L[Gt(1)(f6, h1, k, FIGHTER)].
1≤k≤5

TRACKS = {(FIGHTER, t1), (FIGHTER, t2), (FIGHTER, t3)}, m = 3 and
h1(42, 8, 5) = (FIGHTER, t1), t1=a(f6)a(e5)a(e4)a(f3)a(g2)a(h1),
h2(42, 8, 5) = (FIGHTER, t2), t2=a(f6)a(e5)a(f4)a(f3)a(g2)a(h1),
h3(42, 8, 5) = (FIGHTER, t3), t3=a(f6)a(f5)a(f4)a(f3)a(g2)a(h1).

According to [33] there are three such trajectories, and they are generated by the certain grammar
Gt(1) . (Of course, there is one more trajectory, a(f6)a(g5)a(h4)a(h3)a(h2)a(h1), which partially
coincides with the main trajectory of the Zone and thus should be rejected.) Beginning with this
step the derivation can be continued with three strings depending on the production applied on this
step: 41, 42 or 43. It means we can derive three Zones with the same main trajectory and different
intercepting trajectories from f6 to h1. Let us apply production 41 and continue derivation of Zone

27

with the following trajectory
tF = t1 =a(f6)a(e5)a(e4)a(f3)a(g2)a(h1).

Thus, taking into account that TIME(8) = 5, we have
41=>t(BOMBER, tB, 5)t((FIGHTER, tF), 5)A((42, 8, 5), v, g(FIGHTER, tF, zero)).
Next we have to compute g(FIGHTER, tF,zero). According to Table 2, for all r ∈ X the r-th

component of function g is as follows:

gr(FIGHTER,tF , zero) =
1, if DIST(r, FIGHTER, tF) < 118,

0, if DIST(r, FIGHTER, tF) = 118,




The value of function DIST (x, FIGHTER, tF) = k+1, where k is the number of symbol of the
trajectory tF, whose parameter value equals x. Consequently

DIST (e5, FIGHTER, tF) = 2, DIST (e4, FIGHTER, tF) = 3, DIST (f3, FIGHTER, tF) = 4
DIST (g2, FIGHTER, tF) = 5, DIST (h1, FIGHTER, tF) = 6

For the rest of x from X DIST (x, FIGHTER, tF) = 2 x 59 =118. Thus for r ∈{e5, e4, f3, g2,
h1}={35, 28, 21, 15, 8} gr(FIGHTER, tF, zero) = 1, for the rest of r gr= 0.

Now we can complete application of production 41. It remains to compute values of functional
formula:

NEXTTIME(z) = ALPHA(z, (FIGHTER, tF), 5–5+1).
As we know from previous steps NEXTTIME(x) = 118 for all x from X. Therefor, according to
Table 2

ALPHA(x,FIGHTER, t F,1) =

max(NEXTTIME(x),1) ,if (DIST(x,FIGHTER,tF) ≠ 118)

 ∧ (NEXTTIME(x) ≠ 118)

NEXTTIME(x), if DIST(x, FIGHTER,t F) = 118),

1, if DIST(x, FIGHTER,t F) ≠ 118).









Thus, for x ∈{e5, e4, f3, g2, h1} ALPHA(x, FIGHTER, tF, 1) = 1, while for other x
ALPHA(x, FIGHTER, tF, 1) = 118. The same values should be assigned to NEXTTIME(z).

1

1

1

1 1

1

1

1

1

1

Fig. 7 . A representation of values of w (left) and NEXTTIME(z) (right) after generating
trajectory a(f6)a(e5)a(e4)a(f3)a(g2)a(h1).

Values of function g and, consequently, values of components of vector w , different from
zero, mark ending points of prospective trajectories of robots from P1 that could support
interception of BOMBER by protecting points the 1-st negation trajectories, points e5, e4, f3, g2,
h1 in Fig. 7. According to Definition 4.5 these trajectories are the 2-nd negation trajectories.
Values of NEXTTIME for the same points (Fig. 7, right) designate maximum lengths of those
prospective trajectories. These values are equal 1 because trajectory tF is an intercepting trajectory
of maximum length (5). It means that no one robot has enough time to intercept BOMBER at point
h1 while moving along the trajectory of a greater length. Thus there is no extra time for robots

28

from P1 to approach points of trajectory tF (for possible protection) while robot FIGHTER is
moving along tF. Values of w and NEXTTIME are computed employing productions 3 and 4j,
while 1-st negation trajectories are generated. After completion of this generation these values will
be assigned to v and TIME, respectively, (production 5) to be used for generation of the 2-nd
negation trajectories.

Points e5, e4, f3, g2, h1 are considered as targets by the other side P2 as well. It means that
the grammar should generate trajectories of robots (if they exist) which could intercept motion of
FIGHTER, and thus prevent interception of BOMBER, the own trajectories. By definition of the
Grammar of Zones (Table 1, predicate Q4) the length of such trajectories is restricted by 1.
(Obviously, there are no own trajectories in the problem shown in Fig. 1, 3.)

Let us continue derivation of Zone. Production 41 was applied successfully, so we have to go
to the production with label 3 and proceed with searching possible starting points of the trajectories
with h1 as the ending point. We return to production 3 but with u =(42, 8, 5), i.e., with l =5 > 0
and x ≠ 59. This means the beginning of a new loop which consists of multiple applications of
production 3 after failures of attempts to apply one of productions 4j

3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5) A(43, 8, 5), v, w)
3=>t(BOMBER, tB, 5)t((FIGHTER, tF, 5) A(44, 8, 5), v, w)

.
3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5) A(48, 8, 5), v, w).

The intercepting trajectory to be found is as follows: tM1 = t1 =a(d7)a(b5)a(f1)a(g2)a(h1). We
have

41=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(MISSILE, tM, 5)
A((48, 8, 5),v, g(MISSILE, tM,w)),

Now we have to compute values of the following formula:
NEXTTIME(z) = ALPHA(z, MISSILE, tM, 5–4+1).

According to Table 2:

ALPHA(x,MISSILE,tM, 2) =

max (NEXTTIME(x),2), if (DIST(x,MISSILE,t M) ≠ 118)

 ∧ (NEXTTIME(x) ≠ 118)

NEXTTIME(x) , if DIST(x,MISSILE,t M) = 118) ,

2, if DIST(x, MISSILE,t M) ≠ 118).









Thus, for x ∈{b5, f1, g2, h1} ALPHA(x, MISSILE, tM, 2) = 2, while for other x
ALPHA(x, MISSILE, tM, 2) = 118. These values should be assigned to NEXTTIME(z).

1

1

1

1 2

1

2

1

1

11

1

2

2
Fig. 8 . A representation of values of w (left) and NEXTTIME(z) (right) after generating

trajectory a(d7)a(b5)a(f1)a(g2)a(h1).

Application of production 41 will result in the change of the values of w and NEXTTIME shown in
Fig. 8. As we know values of NEXTTIME for the points b5, f1, g2, h1 designate maximum
lengths of prospective 2-nd negation trajectories ending at those points. These values are equal 2

29

because trajectory tM is an intercepting trajectory of non-maximum length (4) while the length of 5
is allowed. It means there is an extra time (2 time intervals) for robots from P1 to approach points
of trajectory tM (for possible protection) while robot MISSILE is moving along tM.

Then we continue searching for possible starting points of the trajectories with h1 as the
ending point. We return to production 3 but with u =(48, 8, 5), i.e., with l =5 > 0 and x≠59. This
means the beginning of a new loop, which consists of multiple applications of production 3 after
failures of attempts to apply one of productions 4j . This loop will be terminated when Q3(u) = F,
i.e., (x = 59) ^ (y = 8):

3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(MISSILE, tM, 5) A(49, 8, 5), v, w)
3=>t(BOMBER, tB, 5)t((FIGHTER, tF, 5)t(MISSILE, tM, 5) A(50, 8, 5), v, w)

.
 3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(MISSILE, tM, 5) A(59, 8, 5), v, w).

Computations of NEXTTIME(z) in production 3 will not change its values. With u = (59, 8, 5)
this loop is terminated which means that no other starting points are found. Then a new loop
begins. The grammar changes ending point of prospective trajectories:

3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(MISSILE, tM, 5) A(1, 9, 0), v, w)
3=>t(BOMBER, tB, 5)t((FIGHTER, tF, 5)t(MISSILE, tM, 5) A(1, 10, 0), v, w)

.
and eventually

3=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(MISSILE, tM, 5) A(1, 16, 4), v, w),
because for u = (1, 15, 0) y+1 corresponds to h2, TIME(y+1) * vy+1 = TIME(h2) * 1 = 4.

This means that point h2 is determined as the next ending point for generating trajectories of
robots that can intercept motion of the BOMBER. The following derivation steps would allow us
to search for possible starting points of such trajectories. Obviously, nothing will be found. But
the next ending point h3 will be successful. The following trajectory will be found:
tM1 =a(d7)a(b5)a(f1)a(h3). We have

41=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(MISSILE, tM, 5)t(MISSILE, tM1, 5)
A((48, 23, 3),v, g(MISSILE, tM1,w)),

Now we have to compute values of the following formula:
NEXTTIME(z) = ALPHA(z, MISSILE, tM1, 3–3+1).

Values of NEXTTIME are shown in Fig. 9.

1

1

1

1 2

1

2

1

1

11

1

2

2

1 1

Fig. 9 . A representation of values of w (left) and NEXTTIME(z) (right) after generating
trajectory a(d7)a(b5)a(f1)a(h3).

The same positive result will be achieved with the next ending point, h4. The intercepting trajectory
to be found is as follows: tF1 =a(f6)a(g5)a(h4). We have

41=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(MISSILE, tM, 5)t(MISSILE, tM1, 5)
t(FIGHTER, tF1, 2)A((42, 30, 2),v, g(FIGHTER, tF1,w)),

30

1

1

1

1 2

1

2

1

1

11

1

2

2

1

1

1

1

1

1

Fig. 10. A representation of values of w (left) and NEXTTIME(z) (right) after generating
trajectory a(f6)a(g5)a(h4).

Application of production 41 will result in the change of the values of w and NEXTTIME shown in
Fig. 10. Then we continue applying production 3 returning to it each time after unsuccessful
attempt of applying production 4j. This loop will be terminated when Q3(u) = F for x=59.

Next we have to go to production 5. This production is applicable because Q5(w) = (w ≠
0) = T (current values of w are shown in Fig. 10). Thus,

5=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(MISSILE, tM, 5)t(MISSILE, tM1, 3)
t(FIGHTER, tF1, 2)A((0, 0, 0), w , zero)

TIME(z) = NEXTTIME(z)
This is the completion of generation of the 1-st negation trajectories, so production 5 performs the
assignment we promised above. Values of w are assigned to v while NEXTTIME(z) are assigned
to TIME(z). All the steps, 3 and 4j, which have been executed (or tried) for generating 1-st
negation trajectories, will be repeated for generating 2-nd negation trajectories. No one such
trajectory should be found. The next return to production 5 will happen with w = zero (nothing is
found). It means this production is not applicable, and we complete derivation applying production
6:

6=>t(BOMBER, tB, 5)t(FIGHTER, tF, 5)t(MISSILE, tM, 5)t(MISSILE, tM1, 3)
t(FIGHTER, tF1, 2).

10. An Example of Translations

Let us consider the model shown in Fig. 3 in dynamics. Assume that MISSILE has been
lunched in advance, i.e., TRANSITION(MISSILE, d7, b5) took place. On its turn, the BOMBER
from h5 took off, i.e., TRANSITION(BOMBER, d5, d4) happened. Consider values of πo after
these transitions. Let,

M1 = TRANSITION(MISSILE, d7, b5)
M2 = TRANSITION(BOMBER, d5, d4).

Let us apply M1. Thus, according to Definitions 7.3, 7.5 (2, a), for the main trajectory we obtain:
 πo(t(BOMBER, tB,5)) = (t(BOMBER,∏M1

(tB), timerπ(t(BOMBER,tB, 5)) = t(BOMBER, tB, 5)
Similarly, according to Definition 7.5 (2, a) for all the 1-st negation trajectories we obtain

πo(t(FIGHTER, tF, 5)) = t(FIGHTER, tF, 5),
πo(t(FIGHTER, tF1, 2)) = t(FIGHTER, tF1, 2),
πo(t(MISSILE, tM, 5) = t(MISSILE, ∏M1

(tM), 5),
πo(t(MISSILE, tM1, 3) = t(MISSILE, ∏M1

(tM1), 3),
where ∏M1

(tM) and ∏M1
(tM1) are shortened trajectories with excluded first symbol, i.e.,

∏M1
(tM) = tM,s =a(b5)a(f1)a(g2)a(h1), ∏M1

(tM1) = tM,s1 = a(b5)a(f1)a(h3).

31

Lengths of all the 1-st negation trajectories of this Zone after the translation do not exceed values of
timerπ , consequently, according to Theorem 8.1, all these trajectories should be included into the
new Zone Z2 = πM1

(Z1). Let us continue,
 M2 = TRANSITION(BOMBER, h5, h4).

1

2
3

4

5

6
7

8

a b c d e f g h
Fig. 11. Network language in a state after transitions

M1 = TRANSITION(MISSILE, d7, b5), M2 = TRANSITION(BOMBER, d5, d4).

Then, according to Definition 7.5 (1)
πo(t(BOMBER, tB,5)) = t(BOMBER, ∏M2

(tB), 4)
πo(t(MISSILE, tM,s, 5) = t(MISSILE, tM,s, 4),
πo(t(MISSILE, tM,s1 , 3) = t(MISSILE, tM,s1 , 2),

where ∏M2
(tB) = tB,s = a(h4)a(h3)a(h2)a(h1) is a shortened trajectory. For BOMBER and

MISSILE the following inequalities hold
len(BOMBER, tB,s) = 3 < 4,
len(MISSILE, tM,s) = 3 < 4,
len(MISSILE, tM,s1) = 2 ≤ 2.

According to Theorem 8.1 it means that trajectories tB,s, tM,s, tM,s1 of BOMBER and MISSILE
should be included into the new Zone Z3 = πM2

(Z2)., i.e., MISSILE has enough time to intercept
BOMBER at h3 or h1. But, considering trajectories of FIGHTER, we have

t(FIGHTER, tF, timerπ(t(FIGHTER, tF, 5)) = t(FIGHTER, tF, 4),
t(FIGHTER, tF1, timerπ(t(FIGHTER, tF1, 2)) = t(FIGHTER, tF1, 1),

len(FIGHTER, tF1) = 2 > 1,
len(FIGHTER, tF) = 5 > 4,

which means that trajectories tF1, tF1 of FIGHTER are not included into the new Zone Z3. Indeed,
after transition M2 FIGHTER does not have enough time for interception of BOMBER at h4 or at
h1.

Consider different variant of transitions leading from the initial state. Let
M1 = TRANSITION(FIGHTER, f6, e5)
M2 = TRANSITION(BOMBER, d5, d4).

Let us apply M1. Thus, according to Definitions 7.3, 7.5 (2, a), for the main trajectory we obtain:
 πo(t(BOMBER, tB,5)) = t(BOMBER, tB, 5)
Similarly, according to Definition 7.5 (2, a) for all the 1-st negation trajectories we obtain

πo(t(FIGHTER, tF, 5)) = t(FIGHTER, ∏M1
(tF), 5),

πo(t(MISSILE, tM, 5) = t(MISSILE, tM, 5),
πo(t(MISSILE, tM1, 3) = t(MISSILE, tM1, 3),

32

where ∏M1
(tF) is a shortened trajectory with excluded first symbol, i.e.,

∏M1
(tF) = tF,s =a(e5)a(e4)a(f3)a(g2)a(h1).

Concerning ∏M1
(tF1), we conclude that after transition M1 tF1 loose the connection with the main

trajectory tB, ∏M1
(tF1) = e, hence tF1 ∉ Con∏(Z1). Lengths of the 1-st negation trajectories of this

Zone, accept for tF1, after translation ∏M1
do not exceed values of timerπ , consequently,

according to Theorem 8.1, all these trajectories should be included into the new Zone Z2 =
πM1

(Z1). It means that both FIGHTER and MISSILE have enough time for interception.
Let us continue,

 M2 = TRANSITION(BOMBER, h5, h4).

1

2
3

4

5

6
7

8

a b c d e f g h
Fig. 12. Network language in a state after transitions

M1 = TRANSITION(FIGHTER, f6, e5), M2 = TRANSITION(BOMBER, d5, d4).

Then, according to Definition 7.5 (1)
πo(t(BOMBER, tB, 5)) = t(BOMBER, ∏M2

(tB), 4)
πo(t(FIGHTER, tF,s, 5)) = t(FIGHTER, tF,s, 4),
πo(t(MISSILE, tM, 5) = t(MISSILE, tM, 4),

where ∏M2
(tB) = tB,s = a(h4)a(h3)a(h2)a(h1) is a shortened trajectory. For BOMBER, FIGHTER

and MISSILE the following inequalities hold
len(BOMBER, tB,s) = 3 < 4,
len(FIGHTER, tF,s) = 4 ≤ 4,
len(MISSILE, tM) = 4 ≤ 4.

According to Theorem 8.1 it means that trajectories tB,s, tF,s, tM of BOMBER, FIGHTER and
MISSILE should be included into the new Zone Z3 = πM2

(Z2)., i.e., FIGHTER and MISSILE
have enough time to intercept BOMBER at h1. But, considering trajectory tM1 of MISSILE, we
have

t(MISSILE, tM1, timerπ(t(MISSILE, tM1, 3)) = t(FIGHTER, tF, 2),
len(MISSILE, tM1) = 2 > 1,

which means that this trajectory is not included into the new Zone Z3. Indeed, after transition M2
MISSILE does not have enough time for interception of BOMBER at h3.

11. Discussion

In this paper we made a step towards a complete solution of the problem relative to the well

33

known Frame Problem in Linguistic Geometry. This is the problem of efficient and constructive
description of the change of the system representation while the system moves from one state to
another one looking for an optimal operation. This problem is ever present in many existing
artificial intelligence planning systems. A complete solution of the problem for the given model
would permit us to avoid recomputation of the entire hierarchy of languages in each system state.
Instead, we would be able to accomplish the differential recomputation of the changed part of the
hierarchy, as well as computation of the completely new part. For a complete solution we have to
investigate the trajectories that loose the connection with the main trajectory of the Zone in the new
state, as well as new trajectories, which did not exist in the previous state. This investigation is in
progress. A complete solution will ensure high effectiveness of the implementations of the
hierarchy of languages.

References

1. M.R. Garey and D.S.Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Co.: San Francisco, (1991).

2. H.A.Simon, The Sciences of the Artificial, 2-nd ed., The MIT Press: Cambridge, MA,
(1980).

3. M.D. Mesarovich, D. Macko, Y. Takahara Y., Theory of Hierarchical Multilevel Systems,
Academic Press, New York, (1970).

4. M.M. Botvinnik, Computers in Chess: Solving Inexact Search Problems. Springer Series in
Symbolic Computation, Springer-Verlag: New York , (1984).

5. J. McCarthy and P.J. Hayes, Some Philosophical Problems from the Standpoint of Artificial
Intelligence, Machine Intelligence, vol. 4, 463–502, (1969).

6. R.E. Fikes and N.J. Nilsson, STRIPS: A New Approach to the Application of Theorem
Proving in Problem Solving, Artificial Intelligence, 2, 189–208, (1971).

7. J. McCarthy, Circumscription – A Form of Non-Monotonic Reasoning, Artificial
Intelligence, 13, 27-39, (1980).

8. N.J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Co., Palo Alto, CA,
(1980).

9. E.D. Sacerdoti, Planning in a Hierarchy of Abstraction Spaces, Artificial Intelligence, 5-1,
115-135, (1974).

10. E.D. Sacerdoti, The Nonlinear Nature of Plans, Proceedings of the International Joint
Conference on Artificial Intelligence, (1975).

11. M. Stefik, Planning and meta-planning (MOLGEN: Part 2), Artificial Intelligence, 16-2,
141-169, (1981).

12. D. Chapman, Planning for conjunctive goals, Artificial Intelligence, 32-3, (1987).
13. D. McAllester and D. Rosenblitt, Systematic Non-Linear Planning, Proc. of AAAI-91, 634-

639, 1991.
14. N. Chomsky, Formal Properties of Grammars, in Handbook of Mathematical Psychology,

ed. R.Luce, R.Bush, E. Galanter., vol. 2, 323-418, John Wiley & Sons, New York,
(1963).

15. S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw Hill, New
York, (1966).

16. D.E. Knuth, Semantics of Context-Free Languages, Mathematical Systems Theory, 2-2,
127–146, (1968).

17. D.J. Rozenkrantz, Programmed Grammars and Classes of Formal Languages, Journal of the
ACM, 16-1, 107–131, (1969).

18. K.S. Fu, Syntactic Pattern Recognition and Applications, Prentice Hall, Englewood Cliffs,
NJ, (1982).

19. R.N. Narasimhan, Syntax–Directed Interpretation of Classes of Pictures, Communications
of the ACM, 9, 166–173, (1966).

20. T. Pavlidis, Linear and Context-Free Graph Grammars, Journal of the ACM, 19, 11–22,
(1972).

34

21. A.C. Shaw, A Formal Picture Description Scheme as a Basis for Picture Processing System,
Information and Control, 19, 9–52, (1969).

22. J. Feder, Plex languages, Information Sciences, 3, 225–241, (1971).
23. J.L. Pfaltz and A. Rosenfeld, WEB Grammars, Proceedings of the 1-st International Joint

Conference on Artificial Intelligence, Washington, D.C., 609–619, (May 1969).
24. B.M. Stilman, Hierarchy of Formal Grammars for Solving Search Problems, in Artificial

Intelligence. Results and Prospects, Proceedings of the International Workshop, Moscow,
63–72, (1985), [in Russian].

25. N.G. Volchenkov, The Interpreter of Context-Free Controlled Parameter Programmed
Grammars, in Cybernetics Problems. Intellectual Data Banks, ed. by L.T. Kuzin, The USSR
Academy of Sciences: Moscow, 147–157, (1979) [in Russian].

26. A.I. Reznitskiy and B.M. Stilman, Use of Method PIONEER in Automating the Planning of
Maintenance of Power-Generating Equipment, Automatics and Remote Control, 11, 147-
153, (1983) [in Russian].

27. M. Botvinnik, E. Petriyev, A. Reznitskiy, et al., Application of New Method for Solving
Search Problems For Power Equipment Maintenance Scheduling”, Economics and
Mathematical Methods, 19-6, 1030-1041, (1983) [in Russian].

28. B. Stilman, A Linguistic Geometry of Complex Systems, Abstr. of the Second Int.
Symposium on Artificial Intelligence and Mathematics, Ft. Lauderdale, FL, (Jan. 1992).

29. B. Stilman, A Syntactic Structure for Complex Systems, Proc. of the Second Golden West
International Conference on Intelligent Systems, Reno, NE, 269-274, (June 1992).

30. B. Stilman, A Geometry of Hierarchical Systems: Generating Techniques, Proc. of the Ninth
Israeli Conference on Artificial Intelligence and Computer Vision, Tel Aviv, Israel, 95-109,
(Dec. 1992).

31. B. Stilman, A Syntactic Approach to Geometric Reasoning about Complex Systems, Proc.
of the Fifth International Symposium on Artificial Intelligence, Cancun, Mexico, 115-124,
(Dec. 1992).

32. B. Stilman, A Linguistic Geometry of Complex Systems, Annals of Mathematics and
Artificial Intelligence, (1992), (submitted).

33. B. Stilman, A Linguistic Approach to Geometric Reasoning, Int. J. Computers and
Mathematics with Applications, (1992), (to appear).

34. B. Stilman, Network Languages for Complex Systems, Int. J. Computers and Mathematics
with Applications, (1992), (to appear).

