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Abstract
both the branching factor and the computation time for
the systems based on LG were several times smaller
than those for the competition (Stilman, 1994a). Note
that although LG has a discrete nature, it has been
applied to some continuous systems as well through
an ad hoc discretization of the latter (Stilman, 1994-
1995).

The Linguistic Geometry (LG) approach to
discrete systems was introduced B. Stilman in early
80s. It employed competing/cooperating agents for
modeling and controlling of discrete systems. The
approach was applied to a variety of problems with
huge state spaces including control of aircraft,
battlefield robots, and chess. One of the key
innovations of LG is the use of almost winning
strategies, rather than truly winning strategies for the
playing agents. There are many cases where the
winning strategies have so high time complexity that
they are not computable in practice, whereas the
almost winning strategies can be applied and they
beat the opposing agent almost guaranteed.
Independently of LG the idea of competing/
cooperating agents was employed in the late 80s by
A. Nerode, A. Yakhnis, and V. Yakhnis (NYY) within
their approach to modeling concurrent systems and,
more recently, within the “Strategy Approach to Hybrid
Systems” developed for continuous systems by A.
Nerode, W. Kohn, A. Yakhnis, and others. In order to
enlarge the range of applications of Stilman's results
as well as to understand why they work, we introduce
a new notion of a multi-agent graph-game. Since the
applications of Linguistic Geometry sometimes require
modeling of agents making simultaneous moves, the
new notion was designed to accommodate such
behavior of players.

The computational power of LG is based on a
utilization of human expert heuristics which were
highly successful in a certain class of complex control
systems. However, in contrast to the other
approaches based on the idea of “two competing
agents”, these heuristics made the mathematical
essence of LG extremely complex and thus less
obvious.

After the present investigation we expect to
extend the application domain of LG to the area of
verification of concurrent systems (through the NYY
approach) and to the operating systems supporting
persistent truly concurrent objects. Presently an
approach to the latter area is being developed
(Yakhnis-Yakhnis, in preparation). It is partially based
of the NYY ideas. We also expect that the Linguistic
Geometry would have more extensive applications to
continuous systems via the “Strategy Approach to
Hybrid Systems” developed by A. Nerode, W. Kohn,
A. Yakhnis (NKY), and others (Kohn-Nerode, 1993;
Nerode-Remmel-Yakhnis,1993; Nerode-Yakhnis,
1992). This is possible since the latter approach
eventually converts continuous systems into discrete
ones.

1. INTRODUCTION
1.2. State Transition Systems and Their

Control1.1. Computational Power of Linguistic
Geometry A state transition system (STS) is a system

involved in a process of changing its state in a
discrete manner either until some goal is reached or
ad infinitum. For example, chess (or checkers) may
be viewed as a discrete state system with states as
positions of the pieces on the board, state transitions
as legal moves of the players, and the goal as a
checkmate (or elimination of all the pieces of the
opposition). Another example is a concurrent program
where the state of the system is a combination of the
states of the component processes plus the set of all
submitted but yet unexecuted instructions plus the set
of messages that were sent but not yet delivered
(Nerode-Yakhnis-Yakhnis, 1992, 1993). The state

The purpose of this paper is to investigate the
foundations for the LG, so that the similarities and the
differences between it and the other approaches
exploiting the idea of “several competing agents”
would be well understood. What distinguishes LG
from other AI approaches is its tremendous
computational power. Experiments comparing the AI
systems based on LG and those utilizing other
approaches (e.g. alpha-beta pruning) have shown the
former to be superior (Stilman, 1994a, 1994b, 1995b).
Some of the problems were not solvable by other
approaches at all, whereas LG systems successfully
solved them (Stilman, 1995a). For other problems



transitions are legal executions of instructions or
receptions of messages, and the goal is the set of
states corresponding to the computational result
described in the program specification.

specification is regarded as a strategy winning the
game with respect to the aforementioned winning
condition. Thus the algorithms solving this class of
games become applicable for the concurrent program
specification and, possibly, even for the extraction of
programs from the specifications.

Besides the goal, a desirable behavior of a
system may include a constraint, i. e., a condition that
the system states must always satisfy during the
process of going through the state transitions. For
example, in chess a constraint may be formulated as
“avoid the stalemate”. For a concurrent program
adherence to “mutual exclusion” is an example of a
constraint.

The NKY approach is a highly interesting
approach to the control of continuous systems
proposing a framework intended for extracting and
verifying control programs for continuous plants. The
approach regards such programs as finite state
winning strategies in the games associated with the
plants. This approach partially builds on the ideas
developed within the NYY approach.

Another aspect of STS is their control. The
problem of systems control is the problem of how to
influence the state transitions so that the goal would
be reached, the constraint would always be satisfied,
etc. Often there exists an explicit agent (we shall call it
Controlling-Agent) given at least a partial influence on
the state transitions and entrusted with the task of
guiding the system through the state transitions from
some initial state, so that eventually the system
specification would be satisfied. For example, in
chess the Controlling-Agent is the player we are
rooting for. For a concurrent program the Controlling-
Agent is not explicitly given. We may think that it is the
whole team of programmers entrusted with writing
and maintaining the program (Nerode-Yakhnis-
Yakhnis, 1992).

The “two competing agents” view requires us to
always identify (or create) the competing agents, even
if the original system does not include their explicit
definition. For example, in chess the Opposing-Agent
is the player we are not rooting for. For a concurrent
program, similar to the Controlling-Agent, the
Opposing-Agent is not explicitly given. We may think
that in some sense it is all the hardware involved in
running the program (Nerode-Yakhnis-Yakhnis,
1992). The major benefit of the “two competing
agents” view is a possibility to formulate for each
competing agent an explicit strategy guiding its
behavior. All the above approaches concentrate on
finding such strategies.

1.3. “Competing Agents” View on Discrete
State Systems

1.4. Summary of Results
• Rigorous foundations of the LG complex systems

via state transition systems (STS).To solve the problem of systems control, we view
the state transition process of a system as a
contest/cooperation between several competing/
cooperating agents, one of which may be the
aforementioned Controlling-Agent. When there are
only two competing agents, we'll call the other agent
the Opposing-Agent. For simplicity sake and also
since the case of two competing agents is a common
occurrence, we'll mostly limit our introductory
discussion to that case.

• Introduction of multi-agent graph-games (involving
several competing/cooperating agents), capable
of covering simultaneous moves of several
agents.

• Theorem of Coincidence of the classes of STS
generated by the LG complex systems and by the
multi-agent graph-games.

• Transference of Linguistic Geometry's algorithms
computing “almost winning” strategies to several
approaches to systems control utilizing the idea of
competing/cooperating agents.

Similar to the Controlling-Agent, the Opposing-
Agent exercises at least a partial influence over the
state transitions and, in contrast to the Controlling-
Agent, its purpose is either to guide the controlled
process to a point where the constraint would be
violated or to prevent reaching the goal. Such formal
view of STS control was introduced in the early 1980s
by B. Stilman in (Stilman, 1981, 1985). A substantial
later refinement of Stilman's approach was called in
(Stilman, 1992) the “Linguistic Geometry” (LG). In the
late 80s a similar view independently appeared within
Nerode-A. Yakhnis-V.Yakhnis (NYY) approach to
modeling concurrent systems (Yakhnis, A. 1989,
Yakhnis, V. 1989, Nerode-Yakhnis-Yakhnis 1992,
1993), and, more recently, within the NKY approach.

2. THE LG COMPLEX SYSTEMS AS STATE
TRANSITION SYSTEMS

2.1. State Transition Systems
In order to conveniently discuss the Linguistic

Geometry approach, we would like to introduce the
notion of state transition systems (STS). STS are very
much like deterministic finite state automata
(Hopcroft-Ullman, 1979), but viewed with the following
three distinctions. First, similar to Büchi-Landweber
(1969), we admit both finite and infinite input
sequences. Second, similar to Rabin (1969), we
concentrate on the automata runs (sometimes called
system runs or transition sequences) which are,

The NYY approach regards a specification for a
concurrent program as a winning condition in a certain
two player game, whereas a program satisfying the



roughly speaking, sequences of states through which
the automaton passes while accepting an input
sequence. Just as the input sequences, runs may be
finite or infinite. Third, similar to Stilman (1981, 1985),
we treat the input symbols as partial unary operations
on the automaton states (we call them transition
functions), and we treat the automaton transition table
as a collection of transition rules, as explained below.
Thus, an STS, say , is a quintuple

• each state in the sequence, except the initial
state, is the result of applying one of the transition
functions to the previous state according to the
transition rules as follows. Suppose that si and
si+1 are two adjacent states in a transition
sequence. Then there is a transition rule (Sf, f)
applicable to si and such that si+1 = f(si).

If the transition rules were invalid, then, while
building a system run, we may have reached a state,
say s, and choose a transition (Sf, f) applicable to s
but such that f(s) would be undefined. On the other
hand, if the transition rules are incomplete, then we
may have reached a state not in Sfin, say s, such that
there would be no transition rules applicable to s. So
the system run would be terminated illegally.

 = 〈S, Sin, Sfin, TF, TR〉, where
• S the (finite) space of states;
• Sin the set of initial states;
• Sfin the set of final states;
• TF the set of input symbols, also called 

transition functions;
• TR the transition table represented 

as a set of transition rules. We would like to make a note about parametrizing
the transition rules. Sometimes it is convenient to
write them in the formAll the above sets are usually finite, although the

definitions below are applicable to infinite sets as well.
Now we'll describe the five sets in more detail. S is a
collection of things called states. In a concrete system
they may have a specific structure. Both Sin and Sfin
are subsets of S. Sin and Sfin represent,
respectively, the set of states from which the system
is allowed to initiate a series of transitions (called a
system run), and the set of states where the system
run may be legally terminated. If a system run would
never encounter a final state then it must be infinite.

(Sf(y0, ..., yn–1), f(y0, ..., yn–1)),
where (y0, ..., yn–1) are some parameters pertaining
to some elements within the intrinsic structure of a
state. When the parameters are replaced by concrete
values, then the parametrized formula above would
be converted to a concrete transition rule. For
example the following is a real life parametrized
transition rule for chess (for the convenience sake, we
denoted the first player as 0 and the second player as
1):Each transition function f from TF is a partial

function of the form f: S→S. Each transition rule is a
pair of the form (Sf, f), where f is a transition function
and Sf is a subset of S, called the applicability set for
f. We also say that a transition rule (Sf, f) (or a
transition function) is applicable to a state s, if s is in
the set Sf.

• Sf(i, y, z, q0, q1) is the set of all states satisfying
“q0 is a Bishop for a player i, q0 is placed on a
location y, z is a location where a bishop could be
directly moved from y, there are no any pieces
between the locations y and z, a piece q1 of the
player 1-i occupies the location z”;

We call TR tight if for any transition function f
there is a unique transition rule (Sf, f) for some set of
states Sf. Using tight transition rules is a matter of
convenience. There are also two crucial properties
that the transition systems must satisfy in order to
correctly represent finite state automata, namely,
validity and completeness:

• f(i, y, z, q0, q1) removes the piece q1 from z and
relocates the piece q0 from y to z.

Finally, STS are intended to be used for modeling
those real life systems which operate by switching
from a state to a state according to some rules in a
manner similar to system runs for STS. As was
discussed in the introduction, real life systems are
usually associated with one or more agents which
may have some (possibly conflicting) requirements on
the properties of the system run. The agents try to
fulfill their goals by influencing the selection of the
next input (i. e., a transition function) for the system.
This selection is limited to the set of all transition
functions applicable to the current system state. The
purpose of systems control is to provide the agents
with strategies helping them to select applicable
transition functions so that their requirements on the
system run would be eventually satisfied. The above
“bare-bones” definition does not have any structure

• We call TR valid if for each transition rule (Sf, f),
Sf ⊆ Dom(f);

• We call TR complete if
S = (Sfin ∪ (∪f∈TFSf))

We now can formally define a system run for Γ. It
is a finite or infinite sequence of states from S, written
from left to write and such that:
• the leftmost state is an initial state;
• if the sequence contains a final state, the

sequence is finite and the final state is the
rightmost state;

• if the sequence does not contain a final state, the
sequence is infinite;



for expressing strategic behavior. The LG complex
systems provide such a structure. 2.3. The LG Complex Systems

2.3.1. The Eight-Tuple
2.2. An intuitive View on the Linguistic

Geometry
Within the LG approach a practical

implementation of STS was called Complex Systems
(Stilman 1981, 1985, 1992). We'll first discuss the
Complex Systems in the way they were originally
defined and then we'll slightly adjust this definition to
accommodate our present theoretical view. A
Complex System, say , is the following eight-tuple:

Linguistic Geometry (LG) is an approach to
control of state transition systems with a particular
structure of states. Each state is represented as a
disposition of certain pieces (also called elements) on
a board consisting of a collection of locations (also
called points). In this context a piece is placed on a
location (as in chess or checkers). The state
transitions correspond to moving pieces, i. e.,
relocating pieces within the board, removing from, and
placing pieces on the board. Each piece imposes a
geometrical structure of immediate reachability on the
board by defining for each given location a collection
of all locations where the piece could be relocated in
one step from the given location (hence, the
“Geometry” portion of the name).

 = 〈X, P, R, ON, v, Sin, Strg, TR〉
where

• X the space of locations (the board);
• P the set of pieces;
• R the reachability relation, where R⊆P×X×X;
• ON the placement notation for describing 

placement equations of the form ON(p) = 
x, meaning “a piece p placed at a location
x”;

• v a function assigning to each piece a 
numerical value;In addition, the pieces are divided between

several competing/cooperating agents. Each agent
can influence the state transitions by choosing the
moves of its pieces within some framework of rules. In
general, a state transition of the system consists of
simultaneous movements (i. e., relocations, and/or
removals, and/or additions) of pieces for several
opponents, although some frameworks of rules
specify that for each transition only one agent has
control over the relocation of pieces.

• Sin the set of initial states;
• Strg the set of target states;
• TR the set of transition rules.

2.3.2. Locations, Pieces and Reachability
Note that the reachability relation R imposes

some structure on the board X and the pieces P. In
addition, X may have some other intrinsic structure.
For example, for chess (where locations are
sometimes called squares) each square not on the
border has eight adjacent squares corresponding to
eight possible directions of movement, the board is
divided into two disjoined subsets, the White squares
and the Black squares, etc. Also, for a complex
system describing robotic vehicles, the board may be
called Terrain and it may include the subsets Forest,
Swamp, Highway. It is assumed that we have a list of
names for all the locations, e. g., x0, ..., xk–1.

The competing agents have opposing goals,
whereas the cooperating agents have similar goals.
For each agent the LG approach provides for
strategies guiding its behavior so that its goal would
be reached despite the efforts of the opposition.
These strategies utilize a hierarchy of formal
grammars (hence, the “Linguistic” portion of the
name) based on the trajectories on the board,
networks of the trajectories (called zones), and
networks of zones. We call these strategies “almost
winning” since they do not guarantee reaching the
goal against all possible behavior of the opponent.
However, experiments have shown that they provide
a high likelihood of reaching the goal. Moreover, often
they allow an agent to reach its goal when other AI
approaches fail to do so and when the truly winning
strategies are impractical because of their extremely
high time complexity (e. g., for chess or for the
problem of several robotic vehicles in space). An
intuitive reason for this is utilization of human expert
heuristics which were highly successful in a certain
class of complex control systems. In order to
understand better the reasons for a high likelihood of
winning for the LG strategies, we would like to look
deeper into the mathematical foundations of the LG
complex systems and the foundation of the notion of
winning. We'll start from the LG complex systems.

The set of pieces P is a disjoint union of
collections of pieces P0, ..., Pm–1 assigned,
respectively, to agents A0, ..., Am–1:

P = ∪0≤i<mPi
Similar to locations, the pieces P may have some
additional structure and it is assumed that we have a
list of names for all the pieces for each agent Ai, e. g.,
pi,0, ..., pi,ni

. For example, for robotic vehicles we

may have a subset Tanks with pieces Putton (for
agent USA), Centurion (for agent UK), and T-72 (for
agent Russia), and a subset Cars with pieces Ford
(for agent USA), and Volvo (for agent Sweden).

R(q, y, z) means that y and z are distinct locations
and that the piece q may be relocated from the
location y to the location z in one move, provided that
there are no additional obstacles. For example, in



chess if q is not a Knight then any piece placed
between y and z serves as an obstacle. There are no
obstacles for Knights. The statements describing the
absence of obstacles are included within the
applicability conditions for the transition rules.

relocating a piece q from a location y to a location z is
defined as follows:
• Removal list: D(y, q);
• Placement list: D(z, q).

The sets of states (i. e., the subsets of DISP) will
be described as follows. We'll define a first order
language with a unique variable D associated with
elements of DISP (quantifications over DISP would
not be allowed) and some other variables associated
with other elements of the structure of  (i. e., X, P,
etc.) After that any formula ϕ(D) in that language, with
no occurrences of free variables other than D, would
represent the set of all concrete elements D0 of DISP
such that ϕ(D0) holds. A formula containing
occurrences of free variables other than D would
represent a parametrized subset of DISP with the free
variables other than D serving as parameters.

2.3.3. The STS embedded in 
We will now define which transition system  = 〈S,

Sin, Sfin, TF, TR〉 is being modeled by the eight-tuple
above. We can immediately identify two components,
namely, Sin and TR, that have exactly the same
meaning and notation in  and in . However, we'll
still have to discuss their implementation within the LG
framework. In addition, there is a third component,
namely, Sfin, which has the same meaning and
notation in  and in . Sfin was not explicitly included
in the eight-tuple, although it was implicitly present. A
historical reason for such implicit inclusion was
avoiding confusion with Strg which has entirely
different meaning.

With this in mind, a parametrized transition rule
would be of the form (ϕ(D, w0, ..., wn–1), RL(w0, ...,
wn–1), PL(w0, ..., wn–1)), where w0, ..., wn–1 are
parameters, ϕ is  a formula with no free variables
other than D, w0, ..., wn–1, and RL(w0, ..., wn–1) and
PL(w0, ..., wn–1), respectively, are parametrized
Removal and Placement lists. Moreover, it is
assumed that both the Removal and Placement lists
contain only such placement equations D(y, q) where
y and q are either parameters or some concrete
locations or pieces.

The space of states S for  is a subset of the
space DISP of all possible functions D (called
disposition functions) of the form D: X→PowerSet(P).
Given a disposition function D, it is convenient for us
to slightly abuse notation by sometimes writing D(x, p)
instead of p∈D(x). Both notations mean “a piece p is
placed at a location x within the disposition D”. We
would like to adjust some of the original notation for
LG complex systems to this view. We'll write D(x, p)
instead of “ON(p) = x in a state D”. Just as Sfin, S
was implicitly included in the LG complex systems. In
a little while we'll describe how S⊆DISP was
implemented.

Now we would like to show how to establish the
validity and completeness of TR. First we associate
RL(w0, ..., wn–1) with a formula CRL(w0, ..., wn–1)
representing the conjunction of all the placement
equations in the list. One of the necessary conditions
of validity is the formula ϕ(D, w0, ..., wn–1) ⇒
CRL(w0, ..., wn–1). If this formula is not true, then the
transition function may attempt to remove a piece
from a location in a state where the location does not
contain that piece.

Now we may describe TF. We'll usually call
transition functions for complex systems moves.
Given a disposition D, a move may change D via one
or several relocations, removals, or placements of
pieces. Moves are inherently partial functions since
one cannot remove a piece p from a location x in
relation to a disposition function D if p is not in D(x). In
addition to some other moves, TF contains all
possible moves relocating a piece q from a location y
to a location z for q, y, z satisfying the reachability
condition R(q, y, z).

Another necessary condition of validity is to prove
for every placement equation D(z, q) in RL(w0, ...,
wn–1) that

(CRL(w0, ..., wn–1) ⇒ (∃z1 D(z1, q))) ∨
(ϕ(D, w0, ..., wn–1) ⇒ ¬(∃z1 D(z1, q))).

2.3.4. Implementation of the Elements of the
Embedded STS

If this formula is not true, then the transition function
may attempt to place a piece on the board in a state
where the board already contains that piece. This, in
turn, would violate the definition of a state. Concrete
complex systems may have other requirement
necessary to check in order to establish validity. For
example, in chess or checkers a location may contain
at most one piece.

Now that we understand how the five elements of
STS (i. e., S, Sin, Sfin, TF, TR) are embedded within

, we'll describe how they are implemented. A move
f∈TF is implemented as a sequential application of
two operations, removal of some pieces from the
board, and placement of some pieces on the board.
The first one is defined via a Removal list, and the
second one is defined via a Placement list. Each list
contains several placement equations of the form D(x,
p) (ON(p) = x in the original notation). For example,

Finally in order to establish completeness, one
has to prove that the disjunction of the formula
representing the set of final states Sfin with the
disjunction of all the formulas of the form (∃w0, ...,



wn–1ϕ(D, w0, ..., wn–1)), where ϕ(D, w0, ..., wn–1) is
the applicability condition from a (parametrized)
transition rule, follows from the formula representing
the space of states S.

functions as those of MSTS (i. e., moves). We
combine all the registers and MSTS into one global
STS (GSTS) as follows.
• The state space of GSTS is a Cartesian product

of the state spaces of the components.

2.3.5. The Formal Language Associated with • For every move f its GSTS applicability condition
is a Cartesian product of the applicability
conditions for f for the components.

• Sorts: X, P, DISP, N, where N is the set of
nonnegative integers.

• Relations: R⊆P×X×X; P0, ..., Pm–1⊆P;
Apply⊆DISP×X×P, and some additional intrinsic
relations on X and P.

In practice, instead of making all these Cartesian
products, it is enough to run the component STS in
parallel and to allow a move if and only if all the STS
allow it simultaneously.• Functions: v: P→N; Agent: P→N and some

additional intrinsic functions on X and P.

castling of
White King

any move
except
castling of
White King

any move
except
castling of
White King

castling of
White King
did not
occur

castling of
White King
occured

• Constants: x0, ..., xk–1; pi,0, ..., pi,ni
 for i = 0,

..., m–1.
• Variables: w for any sort; y, z for X; q for P; i, j

for N; D for DISP; Indices 0, 1, ... are allowed for
all the above variables except for D.

• Restrictions: no quantifiers over D.
• Abbreviations: Apply(D, x, p) is abbreviated

as D(x, p).
• Axioms: X = {x0, ..., xk–1}; Pi = {pi,0, ..., pi,ni

}

for i = 0, ..., m–1; P0, ..., Pm–1 are disjoint;
Fig. 1. The castling register for White KingP = ∪0≤i<mPi; D does not allow the same piece

at more than one locations; Agent(pi,j) = i for i = 0,
..., m–1 and j = 0, ..., ni.

2.3.7. The Winning Conditions and (Almost)
Winning Strategies

The last elements left for discussion are Strg and
v. The set of target states represents all the final
states that are desirable to reach for some agent. This
is called the winning condition for that agent. The
agent, though not explicit in the eight tuple, is
implicitly associated with Strg  by the complex
system. Note that it was also implied that Strg ⊆Sfin.

To illustrate the above, we'll formalize the
example of a parametrized applicability condition for
chess given in section “State Transition Systems”.
Recall that for chess we have two agents, A0 and A1.
We also need two relations from the chess structure,
a unary relations Bishop and a ternary relation
Between. Bishop(q) holds if and only if q is a bishop
and Between(y, y1, z) holds if y and z are on the
same row, or column, or diagonal and y1 is strictly
between y and z. Now we are ready to formalize the
example:

The function v is used within the LG almost
winning strategies. Intuitively, those enemy pieces
within reach that have larger v-value are targeted for
elimination. Moreover, the LG strategies project the
total v-value lost by the opponent(s) and by the
friendly agent(s) during a potential skirmish. If the
friendly losses are larger, the strategy would not
initiate the skirmish.

• Sf(i, y, z, q0, q1) =
(Bishop(q0) ∧ i = Agent(q0) ∧ D(y, q0) ∧ R(q0, y,
z) ∧ (∀y1 (Between(y, y1, z) ⇒ ¬(∃q2 D(y1, q2))))
∧ D(z, q1) ∧ (1-i) = Agent(q1));

Now we would like to ask the following two
questions.
• Are there other winning conditions of interest that

the LG winning strategies are either able to meet
now, or may be enabled to meet in the future?

• f(i, y, z, q0, q1):
- Removal list: D(y, q0), D(z, q1);
- Placement list: D(z, q0). • What is the relation between the LG almost

winning strategies and other computable winning
strategies?2.3.6. Using Registers

In addition to the STS discussed above, an LG
complex system may have one or more auxiliary STS
representing some simple and distinctly separate
aspect of the system. We call them registers. Now it is
convenient to call the STS discussed above the main
STS (MSTS). Registers have the same transition

In order to answer these questions, in the
following sections we will investigate the graph-
games.



Meanwhile, we would like to fulfill our promise
about a slight adjustment in the definition of the LG
Complex Systems.

transparent than those developed in (Büchi, 1981;
Büchi-Landweber, 1969).

Building on ideas developed by Büchi-Landweber,
Gurevich-Harrington, and Yakhnis-Yakhnis,
McNaughton (1993) developed a slightly different
version of graph games. For his class of games
McNaughton developed a new and very transparent
algorithm for finding winning strategies which was
significantly less complex than that of Büchi-
Landweber's algorithm. Independently of
McNaughton, Zeitman (1994) simplified the algorithms
for finding winning strategies presented in (Yakhnis-
Yakhnis, 1990) and considerably improved their
exposition. She generalized the notion of game
automata to infinite game automata and introduced
the term “graph-games”.

Firstly, we would like to explicitly include S, Sfin,
and TF within the definition.

Secondly, since “ON” is a notational device and
does not represent a set, function, etc., we would like
to exclude it from the definition. The same goes for
“D”, the suggested above replacement for “ON”.

Thirdly, we would like to replace Strg by AW, a
list of agents and their winning conditions. AW would
have the following form:

A0, W0; A1, W1; ...; Am–1, Wm–1,
where A i is an agent and Wi is her winning condition
for i = 1, ..., m.

Finally, we would like to rearrange the entities in
the tuple by grouping together all the entities
pertaining to the embedded MSTS and combining the
latter and the registers into GSTS. Thus we will
represent  as the following six-tuple:

In order for material of this paper to be accessible
by wider audience, we'll include below a summary of
graph-games. Although a slightly different treatment
of similar material appeared (e. g., Yakhnis-Yakhnis,
1990, 1993) in relation to games defined on trees, in
the papers devoted to graph-games similar material is
usually presented somewhat sketchy.

 = 〈GSTS, X, P, R, AW, v〉

3. GRAPH-GAMES

3.2. A Summary of Graph-Games3.1. Origins of Graph-Games
3.2.1. The Players and Their MovesThe earliest definition of games on graphs that we

know of is in (Berge, 1957). Berge, however, focused
primarily on games where each player attempts to
amass the largest cash value, whereas for us the
games of interest are those where each player
attempts to satisfy his/her winning condition. In
addition, Berge's graphs appear to be inconvenient for
our purposes since their edges were not labeled by
the moves of the players, thus making the latest move
and the state of the game inseparable. We remove
these disadvantages in our definition of graph-games.

We start with the two player games and later will
generalize them to multi-player games. Following
Gurevich-Harrington (1982) (GH), we shall sometimes
call the players 0 and 1. In this case, if  Ω  is a player
then  1–Ω  is the opponent. In some examples we'll
call the players Spot and Stripe, and for chess we'll
use the traditional White and Black.

Each player is associated with a finite alphabet, A
for 0 (or Spot) and B for 1 (or Stripe). A player makes
a move by grabbing a symbol from his/her alphabet
and placing it to the right of the previous moves. We'll
informally refer to the symbols from the alphabet
associated with a player as the “moves” of that player.

Graph-games are based on the idea of encoding
potentially infinite plays into states of an automaton
one step further. Büchi and Landweber (e. g., see
Büchi, 1981; Büchi-Landweber, 1969) pioneered work
in this area. They were first to show that all the
reasoning about each game from a large class of
infinite games can be done in terms of the transition
table of a suitable finite automaton. However, they
worked with very complicated automata (Büchi
automata) accepting the infinite plays corresponding
to winning conditions.

3.2.2. The Game Graph
We'll now introduce the game graph. We follow

Yakhnis A. (1990), Yakhnis-Yakhnis (1993), and
Zeitman (1994) with some modifications.
• the game graph is a finite or infinite directed graph

with a unique initial vertex;
• each vertex is labeled by a unique player;

Independently of Büchi, Gurevich and Harrington
(1982) introduced certain equivalence relations on
infinite game trees, thus implicitly converting them into
more general (possibly finite) directed graphs. Later
this conversion was made explicit in (Yakhnis, A.
1990; Yakhnis V. 1990; Yakhnis-Yakhnis, 1990,
1993). As a result of such explicit conversion (called
game automata and later graph-games) the
algorithms for finding winning strategies presented in
(Yakhnis-Yakhnis, 1990,1993) were significantly more

• the initial vertex is labeled by the player making
the first move;

• vertices with no outgoing edges are called leaves;
• for any vertex v which is not a leaf and which is

labeled by a player Ω:
- each edge outgoing from v is labeled by a

unique move of Ω;
- no two edges outgoing from v have the same

label;



- each edge outgoing from v points at an edge
labeled by 1-Ω.

that the game tree is a particular form of the game
graph.

a y

z

b
wy

PROPOSITION. There is a unique
homomorphism (of labeled directed graphs) from the
game tree onto the game graph.

Proof: Map the empty string into the initial vertex.
For each legal position of length one, say f there is a
unique edge, say d, labeled by f. So, map f into the
vertex pointed to by d. Etc., etc.

EOP
Obviously, two game graphs corresponding to

identical game trees define the same game and
encode the same game rules. We will call such game
graphs compatible.

3.2.5. The Winning Condition
Formally speaking, a play is just a path in a game

graph (either infinite or ending by a leaf). If G is the
game graph, we'll designate the set of all its paths as
Path(G). To indicate a winning condition for a player
Ω, it is enough to identify the set of all such paths, say
W (i. e., W⊆Path(G)), where we assign the victory to
Ω. Within the theory of two player games, it is usually
assumed that the winning conditions of players are
complementary. Thus, if W is the winning condition for
Ω, then Path(G)–W (or Wc in another notation) is the
winning condition for 1–Ω. Finally, in our terminology a
game is a triple 〈G, Ω, W〉 (or, equivalently, 〈G, 1–Ω,
Wc〉), where W is the winning condition for the player
Ω, the player making first move and W is his/her
winning condition. We'll now discuss how to specify
the winning conditions.

Fig. 2. A Game Graph for Spot playing with Stripe

3.2.3. Playing the Game as Running an STS
The game starts at the initial vertex by the player

associated with the vertex. He/she makes a move by
choosing one of the outgoing edges and moving along
the edge toward the next vertex. Any such choice is
considered to be legal. We also think that the move
was made by the label of the chosen edge. Then the
other player takes over, chooses an edge and moves
to the next vertex. And so on, either until a leaf is met
or ad infinitum. By describing all the legal moves, the
game graph encodes the game rules.

The winner of the play is selected according to the
winning condition associated with the game. Below
we'll discuss how the winning conditions are
formalized. Gurevich and Harrington (GH) introduced the

following notation in (Gurevich-Harrington, 1982). Let
X be a subset of the set of all vertices of the game
graph G. (Below we will abbreviate such statements
by saying that X is a subset of G.) Then [X]
designates the set of all paths in G (i. e., plays)
intersecting with X infinitely often. In addition, in
(Yakhnis, A. 1990 and Yakhnis, V. 1990), the set of all
paths in G intersecting with X at least once was
designated as (X). Now, let X1,...,Xn be subsets of the
game graph G. GH considered winning conditions in
the form of a Boolean combination of the sets
[X1],...,[Xn]. Although a set of the form (X) may be
designated as [Y] for some Y, when the finite plays
are allowed it is convenient to explicitly add to the
winning condition some Boolean combinations of
(X1),...,(Xn). We will still refer to such combined
winning conditions as GH winning conditions and we
will call the sets X1,...,Xn their GH kernels. We expect
that specifications of most of the practical systems
would be covered by the above winning conditions.

The game graph is associated with the following
STS. Its states are the graph's vertices, the set of
initial states consists of the initial vertex, the final
states are leafs, the transition functions are moves
and the transition rules are formed as follows. Given a
move, say f, its applicability set is the set of all the
vertices having an outgoing edge labeled by f. The
process of playing the game corresponds to forming
the system run.

3.2.4. Formal Plays, Game Trees and Compatible
Game Graphs

The sequence of all the moves made during the
play constitute a formal play. For example, it may look
as a0, b1, a2, ..., an, bn+1, where a0, a2, ..., an are
the moves of 0 and b1, b3, ..., bn+1 are the moves of
1. A string of symbols forming a prefix (i.e. finite initial
segment) of a formal play is called a position of the
game. Due to Gurevich-Harrington (1982), we call the
set of all possible legal positions of the game the
game tree. The tree structure is imposed by the usual
properties of strings of symbols. For example, the root
of the game tree is the empty string. It is easy to see

For example, in chess if CheckMateB is the set of
all board states where the Black King is under
checkmate, then the winning condition for White is
(CheckMateB). Suppose now that we have two



processes, P0 and P1, and that we would like to write
a monitor running these processes in perpetuity
without starving either of them. If ExecPi is the set of
all system states where a new instruction from Pi has
completed its execution (for i = 0, 1), then
[ExecP0]∩[ExecP1] is the winning condition for the
monitor. Finally, recall from the introduction the
discussion of a kind of winning conditions called
“constraint”. Each constraint has a form (X)c, where X
is some subset of the game graph G and “c” is the
complementation operator in Path(G).

determinacy for two player games with GH winning
conditions”. These strategies were further developed
in (Yakhnis, A., 1989; Yakhnis V., 1989; Yakhnis-
Yakhnis, 1990, 1993; Nerode-Yakhnis-Yakhnis, 1992,
1993) where nondeterministic state-strategies and
“strategies with restraints” were first introduced.

We will use here a modification of Büchi's
strategies from (Yakhnis, A., 1989; Yakhnis V., 1989).
A state strategy for a player Ω is an input-output
automaton accepting moves of 1-Ω as an input and
outputting moves of Ω. The input is used for
memorizing some information about the play (limited
by the memory of the automaton), whereas the output
is used to guide the behavior of Ω during the play.
This is illustrated on Figure 3, where Ω is treated as
the player making the first move.

3.2.6. Strategies
We'll need the following convenient notation. If v

is a vertex on a game graph G, we designate as G(v)
the set of children of v in G (i. e., all the vertices w
with an edge going from v to w). In addition, if b is the
label of an edge d outgoing from v, then G(v, b)
designates the vertex at which d is pointing.

a0 b0 a1 b1 a2

s0 s1 s2labeled
transition

labeled
transition

b0 b1

output

output

output

input

input

Let Ω be a player and Σ be its set of moves. We'll
call a vertex labeled by Ω an Ω-vertex and we'll
designate the set of all such vertices as Ver(Ω). We'll
call a function f:Ver(Ω)→Σ a deterministic -strategy if
for every vertex v∈Ver(Ω) which is not a leaf, f(v) is a
label of an edge outgoing from v. The set of vertices
consistent  with  f  is defined as follows. Fig. 3. Application of a state-strategy.
• the root  e  is consistent with  f;
• if v is consistent with f and v∈Ver(1–Ω) then all

children of v are consistent with f;
Practical state-strategies were also used in

(Stilman, 1981, 1985, etc.) without developing their
general theory. A significant difference in the usage of
state-strategies between Büchi, GH, NYY on the one
hand and Stilman on the other hand was that,
whereas the former were looking for state-strategies
always winning against every possible behavior of the
opponent, the latter considered strategies with a
significant likelihood of winning. In many practical
situations the former strategies may have too high
time complexity for a successful usage.

• if v is consistent with f and v∈Ver(Ω) then G(v,
f(v)) is consistent with  f.

We say that a play is consistent with  f  if all its
prefixes are consistent with  f. We say that  Ω  wins
〈A, B, G, Ω, W〉  using  f  if every play consistent with  f
is in  W. If Ω wins the game using f, we call f a winning
Ω-strategy. Finally, we say that  Ω  wins  〈A, B, G, Ω,
W〉  if there is a winning  Ω-strategy.

In addition to deterministic strategies, it is
sometimes convenient to use nondeterministic
strategies, as was first demonstrated in (Gurevich-
Harrington,1982) and later in (Yakhnis-Yakhnis,
1990). However, nondeterministic strategies are
beyond the scope of this paper.

3.3. Registers
In (Yakhnis, A. 1990 and Yakhnis-Yakhnis 1993),

it was shown how to combine smaller game graphs
encoding different aspects of the game into one game
graph by viewing them as automata (or STS in our
present view). For now it is enough to know that
intuitively such combination is equivalent to running
the component STS simultaneously. Note that we
already discussed similar combination within the
context of the LG complex systems.

3.2.7. State-Strategies
We'll show how to deal with potentially infinitary

nature of plays without having to memorize the entire
prehistory of the play. The state strategies were first
introduced in several works of Büchi and Büchi-
Landweber (e. g., see Büchi, 1981; Büchi-Landweber,
1969). Independently, Gurevich-Harrington (1982)
introduced “strategies with restricted memory” which
fulfilled a similar purpose. Büchi and GH were first to
show that for any game with GH winning condition
there is a winning strategy with restricted memory.
This result is sometimes called “restricted memory

Just as for the LG complex systems, it is
sometimes convenient to decompose the game graph
into a combination of the “main” graph (which is the
transition table of the “main” STS) and one or more
registers. By a register we mean a simple automaton
recording some distinctly separate aspect of the
game. Combining back the main graph and the
registers, as was done in (Yakhnis, A., 1990; Yakhnis-



Yakhnis, 1993), would give us a game graph
compatible with the original game graph.

• LE = (Σ0∪{skip0})× ... ×(Σm–1∪{skipm–1}) –
{(skip0, ..., skipm–1)}, where skipi is not in Σi for i
= 0, ..., m–1;

The most common register is Turn Register which
tells whose turn it is to move. Informally, both the
register and the main automaton are running during
the play. The former tells whose turn it is to move
whereas the latter tells which moves are available for
this player. When the Turn Register is used, the
definition of the main graph is the same as the one for
the game graph, except that the requirement “each
vertex is labeled by a unique player” may be omitted.
This view allows the main graph to be significantly
smaller than the game graph. For example, a
combination of the main graph on figure 5 with the
Turn Register on figure 4 would give us the game
graph on figure 2.

• LV is the set of all nonempty increasing
subsequences of 0, ..., m–1 with the addition that
any integer in the subsequence may be enclosed
in the brackets [ ]. For example, (0, 3, 5) or (2, [3],
[5], 6) are allowed. Below the variables w and t
will represent either bracketed or unbracketed
integers.

Now we may define the multi-agent game graph
as follows.
• it is a finite or infinite directed graph with a one or

more initial vertices;
• each vertex is labeled by an element of LV;

each move
of Stripe

each move
of Spot

• vertices with no outgoing edges are called leaves;
• for any vertex v which is not a leaf and which is

labeled by a sequence σ = w0, ..., wk–1:
- if t is in σ and t is unbracketed, then the label

of each edge outgoing from v may not contain
skipt;

- if i is in {0, ..., m–1} and neither i nor [i] is in σ,
then the label of each edge outgoing from v
must contain skipi;Fig. 4. The Turn Register for Spot playing with Stripe

a y

z

b

w
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- no two edges outgoing from v have the same
label.

It is easy to understand the limitation on the
behavior of the agents imposed by the above graph.
They are confined to producing the system runs
associated with the graph.

PROPOSITION. Each two-player game graph G
may be converted into a two-agent graph G´ in such a
way that the two graphs would define the same game.

Proof: For each edge d of G labeled by w do the
following. If w is a move of 0, change the label into (w,
skip1). Otherwise, change the label into (skip1, w).
The result is G´.Fig. 5. The main graph for Spot playing with Stripe

EOP

3.4. Multi-Agent Graph-Games
THEOREM. The class of STS generated by the

LG complex systems coincides with the class of STS
generated by multi-agent game graphs, up to an
isomorphism.

We are going to generalize the two player graph
games by allowing arbitrary number of players,
simultaneous moves, and skipping of moves by
players. In addition, we'll allow the players to have not
mutually excluding winning conditions. Allowing
simultaneous moves significantly changes the game
environment. For example, the game determinacy
result for two player games fails when simultaneous
moves are allowed. To underline this difference, we
will call the players “agents”.

Proof: It is easy to show that a graph CS of a
STS associated with an LG complex system may be
relabeled by indices of agents and transitions to
conform to the above definition while preserving the
same behavior.

⇐ Let G be a multi-agent game graph. We'll
define the following STS of an LG complex system.
The board is the set of all vertices of G. Every agent is
given a unique piece. At a move along an edge d
labeled by σ, every nonskipping (according to σ)
agent places his/her unique piece at the vertex
pointed to by d. The skipping (according to σ) agents

Now, assume that the agents A0, ..., Am–1 are
associated, respectively, with the alphabets Σ0, ...,
Σm–1. We will introduce two sets, LE, “labels for
edges”, and LV, “labels for vertices”.



do nothing. The pieces placed at the previous move
are removed.

Botvinnik, M.M. (1984) Computers in Chess: Solving
Inexact Search Problems. Springer Series in
Symbolic Computation, Springer-Verlag: New
York, 1984.

EOP

4. CONCLUSION Büchi, J. R. (1981) Winning State-Strategies for
Boolean-Fs Games, a manuscript, 1981.We would like to answer the questions formulated

in the section “The Winning Conditions and (Almost)
Winning Strategies”. Firstly, we note that the graph-
games and the LG complex systems are closely
connected via the multi-agent graph-games, and that
the GH winning conditions are, probably, the most
general winning conditions solvable by computable
winning strategies. Therefore we would like progress
by enabling the LG methods to solve increasingly
complicated winning conditions within the framework
of the GH winning conditions.

Büchi, J. R. (1983) State-Strategies for Games in
Fsd«Gds, The Journal of Symbolic Logic, Vol. 48,
No 4, Dec. 1983.

Büchi, J. R., Landweber, L. H. (1969) Solving
Sequential Conditions by Finite State Strategies,
Trans. of the Amer. Math. Soc.,  Vol. 138, pp.
295-311, 1969.

Davis, M. (1964) Infinite Games of Perfect
Information, Annals of Mathematical Studies, Vol.
52, pages  85-102, 1964.At the moment the LG solves the winning

conditions of the form “reach a set of states Strg”,
where S trg is defined by a formula describing certain
relations between the locations of the pieces on the
board. Thus in our formal notation the winning
condition is (Strg). It appears that LG systems may
also satisfy the constraints in the form (X)c, where X
is also defined by a formula describing states of the
board, see (Botvinnik, 1984). (Recall that fulfilling (X)c
means “you must never reach a state from the set X”.)
The subject for a future investigation is to achieve
more complicated Gurevich-Harrington winning
conditions in the form [X].

Gale, D., Stewart, F. M. (1953) Infinite games with
perfect information, Contributions to the theory of
games, Ann. of Math. Studies, No. 28, Princeton
Univ. Press, pp. 245-266, 1953.

Gurevich, Y., Harrington, L. (1982) Trees, Automata
and Games, Proc. of the 14th Annual ACM
Symposium on Theory of Computing, pp. 60-65,
1982.

Hopcroft, J., Ullman, J. (1979) Introduction to
Automata Theory, Languages, and Computation,
Addison-Wesley, 1979.

Kohn, W., Nerode, A. (1993) Models for Hybrid
Systems: Automata, Topologies, Controllability,
Observability, in Hybrid Systems, R. Grossman et
al eds., Lecture Notes in Computer Science 736,
Springer-Verlag, pp. 317-356, 1993.

Secondly, we note that both LG and several
methodologies solving GH winning condition employ
state-strategies. There are some other tantalizing
similarities between some winning strategies and LG,
although they were developed completely
independently. For example, LG employs state-
strategies based on the shortest paths, which is
similar to Gurevich-Harrington's DecreaseRank
strategies (see Gurevich-Harrington 1982 and
Yakhnis-Yakhnis 1990). In addition, LG employs
state-strategies based on a hierarchy of formal
grammars which has a certain similarity in structure to
the functional computing winning strategies in
(Yakhnis-Yakhnis 1990). In a future work these
similarities will be further investigated.

Landweber, L. H. (1973) Exposition of [Büchi-
Landweber 1969], in B.A. Trakhtenbrot and Ya.
M. Barzdin,  Finite Automata, pp. 113-126, North-
Holland, 1973.

Martin, D. A. (1985) A purely inductive proof of Borel
determinacy, Proc. of Symp. in Pure Mathematics,
Vol. 42, 303-308, 1985.

McNaughton, R. (1993) Infinite Games Played on
Finite Graphs, Annals of Pure and Applied Logic,
Vol. 65, pp. 149-184., 1993.

Morris, J. M. (1979) A Starvation Free Solution to the
Mutual Exclusion Problem, Information
Processing Letters, Vol. 8, pp. 76-80, 1979.
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