
DRAFT

A Linguistic Geometry of the Chess Model
Boris Stilman

Department of Computer Science & Engineering, University of Colorado at Denver,
Campus Box 109, Denver, CO 80217-3364, USA. Email: bstilman@gothic.denver.colorado.edu

ABSTRACT
In order to discover the inner properties of human expert heuristics, which are successful in computer chess,

to investigate these heuristics, improve them and, further, apply to various complex control systems, we develop a
formal theory, the so-called Linguistic Geometry. This research includes the development of syntactic tools for
knowledge representation and reasoning about the game of chess as about a hierarchical complex system. It relies on
the formalization of search heuristics, which allow to decompose this game into the hierarchy of subsystems, and
thus solve this problem reducing the search drastically. The hierarchy of subsystems is represented as a hierarchy of
formal attribute languages . Syntactic tools generating the hierarchy of languages, the controlled grammars, are
introduced in this paper. The performance of the grammar generating paths of pieces is considered in detail. The
generation of the entire hierarchy of languages is considered on example of the R.Reti endgame.

INTRODUCTION
The group led by Prof. Botvinnik attacked the computer chess problem by simulating the

method of a human chess master. The main idea was to replace a one-level complex system, as the
game of chess use to be seen, by a multi-level hierarchical model that could allow us to break the
system into subsystems, to search these subsystems separately and in combinations, and then
combine optimal solutions for subsystems as approximately optimal for the entire system. This
approach reduced the search drastically, down to a hundred of moves. However, the main
difficulty was transferred from the development of efficient search methods to the design of
methods for implementation of this decomposition.

Basically, the questions are as follows. What are these subsystems? What are the most
efficient knowledge representation mechanisms to handle them? Is this decomposition dynamic,
i.e., does it change when we move from one position to another during the search? If so, how to
generate new subsystems, how to understand that subsystem is obsolete and destroy it, how to re-
generate old subsystem by changing it, and, thus, avoid tremendous recomputation. How to
organize the search within the subsystem and evaluate the results?

These and many other questions have been answered in our research. However, some
answers are ambiguous, some questions are still open. Different subsystems were developed.
They are called trajectories, zones, chains of trajectories, and so on. The results were presented by
Botvinnik (1970, 1975, 1984) with contributions of members of research team. Of course, many
interesting advances were made later.

The language used for the development of the model and presentation of the results was
either the language of plausible discussions (for general ideas) or the lower-level algorithmic
language close to programming languages (for the description of implementations). There was a
huge gap between these two languages. The model itself could not be expressed adequately. The
language of plausible discussions is very ambiguous for such a complex subject, while an
algorithmic language is too detailed, and, thus, useless as well. This inadequacy caused many
problems, and not only for presentation. Following Russian proverb, often “we could not see a
forest behind the trees.” It seems that each new result was not really built into the model but simply
added to it violating previous results. The model looked like a collection of bright ideas, complex
algorithms, and interesting results. We needed a mathematical skeleton, something like a search
tree for conventional search models.

For many years I was looking for adequate mathematical tools. Eventually it resulted in the
development of a Hierarchy of Formal Languages (Stilman, 1985) that emerged later into a
Linguistic Geometry (Stilman, 1992-1993). These formal, expressive tools are intended for

investigation and development of all the results achieved in the PIONEER project. In particular,
employing these tools I answer in a formal way the questions listed above. Based on that I
investigate our later results, develop them and go ahead. These new tools allowed not only to
present the results formally, but to prove the correctness of algorithms and data structures. One of
the newest results on correctness of computation of the piece planning path is considered in this
paper. This research already allowed to demonstrate the errors and correct them in algorithms,
which had been implemented as subroutines of the PIONEER program and executed for a long
time. These were some principle mistakes in the adjustment of the model in the process of search.
It is very unlikely they could be found without formal methods. Some advances were made in the
evaluation of the computational complexity of this model. I hope in the future to approach a formal
evaluation of the accuracy of the solutions. Actually, employing these tools I hope to answer the
most intriguing question: why the PIONEER finds solutions of complex positions, why it fails
other cases, and what should be corrected.

The application of Linguistic Geometry is far beyond the framework of the chess problem.
There are many real-world problems where human expert skills in reasoning about complex
systems are incomparably higher than the level of modern computing systems. At the same time
there are even more areas where advances are required but human problem-solving skills can not
be directly applied. For example, there are problems of planning and automatic control of
autonomous agents such as space vehicles, stations and robots with cooperative and opposing
interests functioning in a complex, hazardous environment. Reasoning about such complex
systems should be done automatically, in a timely manner, and often in a real time. Moreover,
there are no high-skilled human experts in these fields ready to substitute for robots (on a virtual
model) or transfer their knowledge to them. There is no grand-master in robot control, although, of
course, the knowledge of existing experts in this field should not be neglected – it is even more
valuable. Due to the special significance of these problems, the quality of solutions must be very
high and usually subject to continuous improvement. Thus, it is very important to study human
expert reasoning about similar complex systems in the areas where the results are successful, e.g.,
in computer chess, in order to discover the keys to success, and then apply and adopt these keys to
the new, as yet, unsolved problems. It should be considered as investigation, development, and
consequent expansion of advanced human expert skills into new areas. The Linguistic Geometry
provides formal tools for this investigation and transfer.

THEORETICAL BACKGROUND
In the 1960’s a formal syntactic approach to the investigation of properties of natural

language resulted in the fast development of a theory of formal languages by Chomsky (1963),
Ginsburg (1966), Knuth (1968), Rozenkrantz (1969), and others. This development provided an
interesting opportunity for dissemination of this approach to different areas. In particular, there
came an idea of analogous linguistic representation of images. This idea was successfully
developed into syntactic methods of pattern recognition by Fu (1982), Narasimhan (1966), and
Pavlidis (1972), and picture description languages by Shaw (1969), Feder (1971), Phaltz and
Rosenfeld (1969). The power of a linguistic approach might be explained, in particular, by the
recursive nature and expressiveness of language generating rules, i.e., formal grammars.

Searching for the adequate mathematical tools formalizing human heuristics of dynamic
hierarchy for the game of chess, we have transformed the idea of linguistic representation of
complex real-world and artificial images into the idea of similar representation of complex
hierarchical systems (Stilman, 1985). However, the appropriate languages should possess more
sophisticated attributes than languages usually used for pattern description. They should describe
mathematically all of the essential syntactic and semantic features of the system and search, and be
easily generated by certain controlled grammars. The origin of such languages can be traced back
to the origin of SNOBOL-4 programming language and the research on programmed attribute
grammars and languages by Knuth (1968), Rozenkrantz (1969), and Volchenkov (1979). A
mathematical environment (a “glue”) for the formal implementation of this approach was developed
following the theories of formal problem solving and planning by Fikes (1971), Nilsson (1980),

Sacerdoti (1975), and McCarthy, Hayes (1969), and others (Stefik, 1981, Chapman, 1987,
McAllester at al, 1991) based on first order predicate calculus.

CLASS OF PROBLEMS
A class of problems to be studied are problems of optimal operation of a complex system.

This system is considered as a twin-set of elements and points(locations) where elements are units
moving from one point to another. The elements are divided into two opposite sides; the goal of
each side is to attack and destroy opposite side elements and to protect its own. Each side aims to
maximize a gain, the total value of opposite elements destroyed and withdrawn from the system.
Such a withdrawal happens if an attacking element comes to the point where there is already an
element of the opposite side. Obviously, the game of chess is such a problem with pieces
substituting for elements and squares of the chess board as points.

A formal definition is as follows. A Complex System is the following eight-tuple:
< X, P, Rp, {ON} , v , S i, S t, TR>,

where
X={xi} is a finite set of points;
P={pi} is a finite set of elements; P is a union of two non-intersecting subsets P1 and P2;
Rp(x ,y) is a set of binary relations of reachability in X (x and y are from X, p from P);
ON(p)=x, where ON is a partial function of placement from P into X;
v is a function on P with positive integer values; it describes the values of elements.

The Complex System searches the state space, which should have initial and target states;
S i and S t are the descriptions of the initial and target states in the language of the first order

predicate calculus, which matches with each relation a certain Well-Formed Formula
(WFF). Thus, each state from Si or St is described by a certain set of WFF of the form
{ON(pj)=xk};

TR is a set of operators, TRANSITION(p, x, y), of transition of the System from one state
to another one. These operators describe the transition in terms of two lists of WFF (to
be removed and added to the description of the state), and of WFF of applicability of
the transition. Here,

Remove list: ON(p)=x, ON(q)=y;
Add list: ON(p)=y;
Applicability list: (ON(p)=x)^Rp(x,y),

where p belongs to P1 and q belongs to P2 or vice versa. The transitions are carried out
in turn with participation of elements p from P1 and P2 respectively; omission of a turn
is permitted.

 According to definition of the set P, the elements of the System are divided into two subsets
P1 and P2. They might be considered as units moving along the reachable points. Element p can
move from point x to point y if these points are reachable, i.e., Rp(x,y) holds. The current location
of each element is described by the equation ON(p)=x. Thus, the description of each state of the
System {ON(pj)=xk} is the set of descriptions of the locations of the elements. The operator
TRANSITION(p, x, y) describes the change of the state of the System caused by the move of the
element p from point x to point y. The element q from point y must be withdrawn (eliminated) if p
and q belong to the different subsets P1 and P2.

The problem of the optimal operation of the System is considered as a search for the optimal
sequence of transitions leading from one of the initial states of Si to a target state S of St. The target
states are described employing the following function of states m(S).

The values of m(S) for a target state are much bigger than for any other one (they are greater
than some constant). In our case we stipulate that

m(S)=∑v(pi)–∑v(pj), (1)
where pi of P1 and pj of P2 which are not withdrawn in a state S. The same function is used to
evaluate variants of the search.

With such a problem statement for the search of the optimal sequence of transitions leading to
the target state, we could use formal methods like those in the problem-solving system STRIPS
(Fikes, Nilsson, 1971) nonlinear planner NOAH (Sacerdoti, 1975), or in subsequent planning
systems. However, the search would have to be made in a space of a huge dimension (for
nontrivial examples). Thus, in practice no solution would be obtained.

We devote ourselves to the search for an approximate solution of a reformulated problem. A
hierarchy to be studied is the hierarchy of subsystems introduced in the problems considered above
by the highly-skilled chess experts. This introduction is as follows (Botvinnik, 1975, 1984). A
one-goal, one-level system should be substituted for a multi-goal multi-level system by introducing
intermediate goals and breaking the system down into subsystems striving to attain these goals.
The goals of the subsystems are individual but coordinated within the main mutual goal. For
example, each second-level subsystem includes elements of both sides: the goal of one side is to
attack and gain some element (a target), while the other side tries to protect it. In chess, it means
the selection of a couple of pieces of opposing sides: one – as an attacking element, and the other –
as a local target, generation of the paths for approaching the target, as well as the paths of other
pieces supporting the attack or protecting the target.

A HIERARCHY OF LANGUAGES
A set of dynamic subsystems might be represented as a hierarchy of formal languages where

each "sentence" (a group of "words" or symbols) of the lower level language corresponds to the
"word" of the higher level one. This is a routine procedure in our native language. For example,
the phrase "A man who teaches students" creates a hierarchy of languages. A lower level language
is a native language without the word "professor." The symbols of this language are all the English
words (except "professor"). A higher level language might be the same language with one extra
word "A-man-who-teaches-students". Instead, we can use the word "professor" which is simply a
short designation of this long word.

Following a linguistic approach each first level subsystem should be represented as a string
of symbols with parameters:

a(x1)a(x2)...a(xn), (2)
where values of parameters incorporate the semantics of the problem domain. They form the so-
called Language of Trajectories. For example, for the lower level subsystems in the chess model
x1, x2,..., xn are the coordinates of squares of the chess board and a(x1)a(x2)...a(xn) represents a
trajectory (a planning path) of a chess piece from the square x1 to xn through squares of stops x2,
x3,..., xn-1.

A second level subsystem should be represented as a similar string with parameters:
t(p1, t1, τ1)t(p2, t2, τ2)...t(pk, tk, τk), (3)

where values of parameters again incorporate the semantics of the problem domain and lower level
subsystems. Symbols pi represent elements of our system (chess pieces), tk represent whole
trajectories (lower level subsystems) of elements pi, i.e., the strings a(x1

pi)a(x2
pi)...a(xn

pi),

included in this subsystem, τi represent “time allocated for motion along the trajectory ti.”
 Thus, using strings of (2), we can represent paths of system’s elements, and with the strings

of (3), networks of certain paths unified by the mutual goal. In the chess model such a network
represents a network of planning paths for a local fight. Strings (3) form the Language of
Trajectory Networks.

The system functions by moving from one state to another; that is, the motion of an element
from one point to another causes an adjustment of the hierarchy of languages. This adjustment can
be represented as a mapping (translation) to some other hierarchy (actually, to the new state of the
same hierarchy). Thus, the functioning of the system, in a process of the search, generates a tree of
translations of the hierarchy of languages. This tree can be represented as a string of the highest
level formal language, the Language of Translations.

 The search for an optimal (suboptimal) operation, i.e., optimal variant in chess, in the new

system is considered as a process of generation and interaction of networks of the form (3). This
process results in a highly reduced search tree which is represented as a string of the Language of
Translations.

 A GEOMETRY OF COMPLEX SYSTEM
To create and study a hierarchy of dynamic subsystems we have to investigate and use

geometrical properties of the Complex System. Consider the following definition of the function
MAP.

X

x

M M M

M 1
 x,p

 x,p x,p x,p
 2 3 4

Figure 1. Interpretation of the family of reachability areas

A map of the set X relative to the point x and element p for the Complex System is the
mapping: MAPx,p: X —> Z+ , (where x is from X, p is from P), which is constructed as
follows. We consider a family of reachability areas from the point x, i.e., a finite set of the
following nonempty subsets of X {Mk

x,p} (figure 1):
k=1: Mk

x,p is a set of points m reachable in one step from x: Rp(x,m)=T;
k>1: Mk

x,p is a set of points reachable in k steps and not reachable in k-1 steps, i.e., points
m reachable from points of Mk-1

x,p and not included in any Mi
x,p with numbers i less

than k.
Let MAPx,p(y)=k, for y from Mk

x,p (number of steps from x to y).
In the remainder points let

MAPx,p(y)=2n, if y≠x (n is the number of points in X);
MAPx,p(y)=0, if y=x.
It is easy to verify that the map of the set X for the given element p from P defines an

asymmetric distance function on X:
1. MAPx,p(y) > 0 for x≠y; MAPx,p(x)=0;
2. MAPx,p(y)+MAPy,p(z) ≥ MAPx,p(z).

 If Rp is a symmetric relation,
3. MAPx,p(y)=MAPy,p(x),

In this case each of the elements p from P specifies on X its own metric.

CHESS AS A COMPLEX SYSTEM
The game of chess is the most transparent example of the Linguistic Geometry application.
X represents 64 squares of the chess board, i.e., n = 64;
P1 and P2 are the white and black pieces;
Rp(x, y) are given by the rules of the game, permitting or forbidding a piece p to make a

move from a square x to a square y; thus a point x is reachable from a point y for an
element p, if a piece p can move from a square x to a square y according to the chess
game rules;

ON(p)=x, if piece p stands on the square x;
v(p) is the value of piece p, e.g., pawn - 1, N - 3, B - 3, R - 5, Q - 9, K - 200;

S i is an arbitrary initial chess position for analysis, or the starting position of the game;
S t is the set of chess positions which can be obtained from all possible mating positions in

two half moves by capturing the King (suppose, this capture is permitted). The sets of
WFF {ON(pj)=xk} correspond to the lists of pieces with their coordinates in each
position.

TRANSITION(p, x, y) represents the move of the piece p from square x to square y. If a
piece of the opposing color stands on y, a capture is affected.

The chess problem does not completely meet the requirements of the general definition of the
Complex System. For simplicity we have neglected such an important chess concept as blockade:
in the Complex System several elements (pieces of the same color) can stand on the same point
(square). Besides that, we have neglected certain specific chess features, such as castling, capture
en passant, pawn promotion, etc. All these chess complications are not crucial for our model; it is
not difficult to define a subclass of Complex Systems where all these features will be taken into
account.

Investigating the geometry of the chess system we can see that here MAPx,p(y) yields the
number of moves necessary for the piece p from square x to reach square y along the shortest path.
Because of the symmetry of the relation Rp in this model, MAPx,p(y) specifies the metric on the
chessboard, own for each kind of piece. For a pawn the symmetry is more complex:

Rp(x,y)=Rq(y,x),
where p and q are the black and white pawns, respectively. Thus function MAP can be used as a
“ruler” to measure distances in this system for different elements.

When implementing the geometrical model for the chess problem, it was necessary to give a
tabular specification of the function MAP, in order to increase the efficiency of the program
PIONEER (Botvinnik, 1970, 1975 – particularly appendixes). For this, in accordance with the
relations Rp (the chess rules of movement of the pieces), seven square tables 15 x 15 were
specified (figure 2).

 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Figure 2. A superposition of tables 8 x 8 and 15 x 15 for the Rook standing on c2

Each of the tables was filled with the numbers for one of the chess piece types according to the
following principle: the piece is placed on the central square of the table (0 is written there); the
remaining squares are filled with the numbers equal to the number of moves necessary for the piece
to reach the given square from the central square along the shortest path. These tables may be
unified in the form of the following table T15(v1, v2, f) with the dimension 15 x 15 x 7. (For all x
of X, x=(x1, x2), x1=1, 2,..., 8, x2=1, 2,..., 8, where x1 and x2 correspond to files and rows of

the chessboard, respectively.) Then
MAPx,p(y)=T15(v1, v2, f), (4)

where x=(x1, x2), y=(y1, y2), v1=8–x1+y1, v2=8–x2+y2, f=f(p) is the type of the piece p (King,
Rook, etc.). Seven tables 15x15 specify on X seven different metrics.

In order to explain (4) we can imagine the following computation procedure. The array 8 x 8
is superimposed on the array 15 x 15 in such a way that square x coincides with the central square
of the array 15 x 15 (figure 2). Further, let us assume that array 8 x 8 is transparent, then on the
corresponding squares we could see values of MAPx,p, i.e., the values of actual distance of these
squares from the square x. An example of superposition of tables for x = c2 and p = Rook is
shown in figure 2.

LANGUAGE OF TRAJECTORIES
Here, we define the lowest-level language of the hierarchy of languages, the Language of

Trajectories. It serves as a building block to create the upper-level languages. The Language of
Trajectories actually is a formalization of the set of lowest-level subsystems, the set of paths
between different points of the Complex System. An element might follow a path to achieve the
goal “connected with the ending point”.

A trajectory for an element p of P with the beginning at x of X and the end at the y of X (x
≠ y) with a length l is a following string of symbols with parameters, points of X:

t = a(x)a(x1)…a(xl),
where each successive point xi+1 is reachable from the previous point xi: Rp(xi, xi+1) holds for i =
0, 1,…, l–1; element p stands at the point x: ON(p)=x. We denote tp(x, y, l) the set of trajectories

in which p, x, y, and l coincide. P(to)={x, x1, ..., xl} is the set of parameter values of the
trajectory t.

Two trajectories of the element p a(1)a(2)a(3)a(4)a(5) and a(1)a(6)a(7)a(8)a(9)a(5) are
shown in the figure 3.

1
2

5

p 3
4

6

7

8

9

Figure 3. Interpretation of shortest and admissible trajectories

A shortest trajectory t of tp(x, y, l) is the trajectory of minimum length for the given
beginning x, end y and element p.

For example, in figure 3, a trajectory a(1)a(2)a(3)a(4)a(5) is the shortest trajectory.
Reasoning informally, an analogy can be set up: the shortest trajectory is an analogous to a straight
line segment connecting two points in a plane. Let us consider an analogy to a k-element
segmented line connecting these points.

An admissible trajectory of degree k is the trajectory which can be divided into k
shortest trajectories; more precisely there exists a subset {xi1

, xi2
, …, xik-1

} of P(to), i1 < i2 <…<
ik-1, k ≤l, such that corresponding substrings

a(xo)…a(xi1), a(xi1)…a(xi2), …, a(xik-1)…a(xl)
are the shortest trajectories.

The shortest and admissible trajectories of degree 2 play a special role in many problems. An
example of such a trajectory a(1)a(6)a(7)a(8)a(9)a(5) is shown in the figure 3. As a rule, elements
of the System should move along the shortest paths. In case of an obstacle, the element should

move around this obstacle by tracing some intermediate point aside (e.g. point 7 in figure 3) and
going to and from this point to the end along the shortest trajectories. Thus, in this case, an element
should move along an admissible trajectory of degree 2.

A Language of Trajectories Lt
H(S) for the Complex System in state S is the set of all

the shortest and admissible (degree 2) trajectories of the length less than H. This language also
includes the empty trajectory e of the length 0.

Properties of the Complex System permit to define (in general form) and study formal
grammars for generating the Language of Trajectories as a whole along with its subsets: shortest
and admissible (degree 2) trajectories. The grammar shown in figures 4, 5 is intended to generate
shortest trajectories. These type of grammars are called controlled grammars (Stilman, 1992c,
1993b). A formal definition of this class is beyond the scope this paper. We demonstrate the details
of the grammar on example of actual generation of trajectories for the chess model (next section).

L Q Kernel FT FF

1 Q1 S (x,y,l) –>A(x, y, l) two ø

2i Q2 A(x,y,l)–>a(x)A(nexti(x,l),y,f(l)) two 3

3 Q3 A(x, y, l) –>a(y) ø ø

Here

VT ={a} is the alphabet of terminal symbols,
VN ={S , A} is the alphabet of nonterminal symbols,
VPR =TruthUPredUConUVarUFuncU{symbols of logical operations and “=“} is the alphabet

of the first order predicate calculus PR,
Truth={T, F}
Pred ={Q1 ,Q2 ,Q3} are predicate symbols:

Q1(x, y, l) = (MAPx,p(y)=l) (0<l <n)
Q2(l) = (l ≥ 1)
Q3 = T

Var = {x, y, l} are variables;
Con = {xo,yo,lo,p} are constants;
Func = Fcon are functional symbols;

Fcon={f,next1, . . . ,nextn} (n=|X|, number of points in X),
f(l)=l-1, D(f)=Z+ \{0}
(nexti is defined below)

E =Z+U X U P is the subject domain;
Parm: S –>Var, A –>Var, a –>{x}, is such a mapping that matches each symbol of the

alphabet VT UVN a set of formal parameters;

L= {1,3} U two, two ={21,22,...,2n} is a finite set called the set of labels; labels of different
productions are different;

Qi are the WFF of the predicate calculus PR, the conditions of applicability of productions;

FT is a subset of L of labels of the productions permitted on the next step derivation if Q=T; it
is called a permissible set;

FF is analogous to FT but these productions are permitted in case of Q=F.
At the beginning of derivation:

x=xo, y=yo, l=lo, xo ∈ X, yo ∈ X, lo ∈ Z+ , p ∈ P.

nexti is defined as follows:
D(nexti)= X x Z+ x X2 x Z+ x P (This is the domain of function next.)

SUM={v |v ∈ X, MAPxo,p(v)+MAPyo,p(v)=lo}
STk(x)={v | v from X, MAPx,p(v)=k},
MOVEl(x) is an intersection of the following sets: ST1(x), STlo-l+1(xo) and SUM.
If
 MOVEl(x)={m1, m2, ...,mr}≠ Ø
 then
 nexti(x, l)=mi for i≤r ;
 nexti(x, l)=mr for r<i≤n,
 otherwise
 nexti(x,l)=x.

 Figure 4. A grammar of shortest trajectories Gt
(1)

 MAP (v) + MAP (v) =

MAP (v) = k x

x
x

MAP (v) = 1

next
next

y

x

x ,p
 0

y ,p
 0

x ,p
 0

 1

 2

x ,p
 k-1 k-1

 1

 0

0

 0

l
0

Figure 5. Interpretation of the function nexti of the grammar Gt (1) .

GENERATION OF TRAJECTORIES ON THE CHESS-BOARD
Let us show the generation of trajectories for the King from f6 to h1. Values of MAPf6, K

are shown in figure 6. Thus, the distance from f6 to h1 for the King is equal to 5. Applying
grammar Gt

(1) (production 1) we have:
S (f6, h1, 5) 1=> A(f6, h1, 5)21=>a(f6)A(next1(f6, 5), h1, 5).

Thus we have to compute MOVE (see definition of the function nexti from the grammar Gt
(1) ,

figure 4, 5). First, we have to determine the set of SUM, that is, we need to know values of
MAPf6,K and MAPh1,K(shown in figure 6) on X. Adding these tables as matrices we compute

SUM ={v | v ∈ X, MAPf6, K(v)+MAPh1,K(v)=5} (figure 6).
The next step is the computation of ST1(f6)={v | v from X, MAPf6,K(v)=1}. It is shown in

figure 7. In order to complete computation of the set MOVE5(f6) we have to determine the
following intersection: ST1(f6), ST5-5+1(f6)=ST1(f6) and SUM.
Consequently, MOVE5(f6)={e5, f5, g5}, and next1(f6, 5)=e5, next2(f6, 5)=f5, next3(f6, 5)=g5.

5 4 3 2 2 2 2 2

5 4 3 2 1 1 1 2

5 4 3 2 1 0 1 2

5 4 3 2 1 1 1 2

5 4 3 2 2 2 2 2

5 4 3 3 3 3 3 3

5 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

7 6 5 5 5 5 5 5

7 7 7 7 7 7 7 7

7 6 6 6 6 6 6 6

7 6 5 4 4 4 4 4

7 6 5 4 3 3 3 3

7 6 5 4 3 2 2 2

7 6 5 4 3 2 1 1

7 6 5 4 3 2 1 0

5

5 5 5

5 5 5

5

5 5

5

5

5

5

MAPf6,K MAPh1,K SUM
Figure 6. Trajectory generation: computation of SUM

+ +

ST1(f6) SUM MOVE5(f6)
Figure 7. Trajectory generation: the first step

Since the number of different values of next is equal to 3 (here r=3, see definition of the function
next, figures 4,5) we could branch at this step, apply productions 21, 22 and 23 simultaneously,
and continue all the derivations independently. This could be accomplished in a parallel computing
environment. Let us proceed with the first derivation.

a(f6)A(e5,h1,4) 21=>a(f6)a(e5)A(next1(e5,4), h1,3)
We have to compute next1(e5, 4) and, as on the preceding step, we have to determine MOVE4(e5).

To do this we have to compute ST1(e5) and ST5-4+1(f6) = ST2(f6)={v | v ∈ X, MAPf6,K(v)=2}

+ +

ST1(e5) ST2(f6) MOVE4(e5)
Figure 8. Trajectory generation: the second step

The set of SUM is the same on all steps of the derivation. Hence, MOVE4(e5) is the intersection of
the sets shown in figure 8 and SUM, MOVE4(e5)= {e4, f4}; and next1(e5,4) = e4; next2(e5, 4) =
f4. This is illustrated in figure 8 (right diagram).

Thus, the number of different values of the function next is equal to 2 (r=2), so the number
of continuations of derivation should be multiplied by 2. Let us proceed with the first one:

a(f6)a(e5)A(e4, h1, 3) 21=> ...
This way eventually we will derive one of the shortest trajectories for the King from f6 to h1:

a(f6)a(e5)a(e4)a(f3)a(g2)a(h1).
Similar generating techniques are used to generate higher level subsystems, the networks of

paths.

CORRECTNESS OF GRAMMAR
Employing the Linguistic Geometry tools we can prove the correctness of procedures used

for generation and update of the hierarchy of subsystems. The theorem considered below verifies
correctness of the grammar of shortest trajectories.

Theorem about shortest trajectories. The shortest trajectories from point x to
point y of the length lo for the element p on x (i.e., ON(p)=x) exist if and only if the
distance of these points is equal lo:

MAPxo,p(yo)=lo, (5)
where lo<2n, n is the number of points in X. If the relation Rp is symmetric, i.e., for all x
from X, y from X and p from P Rp(x, y)=Rp(y, x), then all the shortest trajectories tp(xo,
yo, lo) can be generated by the grammar Gt(1) (figures 4,5).

Proof. We assume that to from tp(xo, yo, lo) exists and is shortest. We shall prove (5). The proof
is carried out by induction with respect to lo. In the case of lo=1 the statement is easily verified. We
assume that for lo<m the statement is true.

Let lo=m and tm from tp(xo, yo, m) be the shortest. We shall prove that MAPxo,p(yo)=m. Let’s
consider the shortened trajectory tm-1 from tp(xo, xm-1, m-1), tm-1= a(xo)a(x1)...a(xm-1), which is
obtained from tm after discarding the last symbol. If tm from tp(xo, xm, m) is the shortest (xm=yo),
then tm-1 is also shortest. But from the assumption it follows that MAPxo,p(xm-1)=m-1. From
definition of function MAP it follows that xm-1 belongs to

m-1 m-1
Mxo,p. Since Rp(xm-1, yo) is true, yo belongs to (U Mjxo,p) U Mmxo,p. If yo is from
m-1 j=1

U Mjxo,p, then the trajectory tm is not the shortest one, since there exists a trajectory t’
j=1

from tp(xo, yo, j) of length j≤m-1. We have a contradiction. Thus, yo belongs to Mm
xo,p, i.e.,

MAPxo,p(yo)=m.
Conversely, let (4) be true. Let’s show that there exists a trajectory belonging to

tp(xo, yo, lo), and that it is the shortest trajectory.
The proof will be carried out by induction. For lo=1 the statement is obvious. Let it be true

for lo<m.
Let now lo=m and MAPxo,p(yo)=m. The shortest trajectory if exists can not be shorter then

m, otherwise there exists ko<m such that MAPxo,p(yo)=ko (from the direct statement proved
above), and we have a contradiction.

Let us construct the shortest trajectory belonging to tp(xo, yo, m). By definition of function
MAP there exists xm-1 from

m-1 m-1
Mxo,p such that Rp(xm-1, yo)=T. But from the fact that xm-1 belongs to Mxo,p, we have
MAPxo,p(xm-1)=m-1. Consequently, according to the induction hypothesis, there exists the
shortest trajectory a(xo)a(x1)...a(xm-1) of length m-1. In such a case the trajectory
a(xo)a(x1)...a(xm-1)a(yo) of length m will also be the shortest one.

To complete the proof of the theorem it remains for us to show that all trajectories
tp(xo, yo, lo) are generated by the grammar Gt

(1) from figure 4, if Rp is symmetric. This
grammar, belongs to the class of controlled grammars. Note that the set of functional symbols Fvar
in it is a set of four zero-arity functions p, xo, yo, lo, i.e., Gt

(1) = G(p, xo, yo, lo). It is obvious
that each of the strings generated by Gt

(1) is a trajectory from tp(xo, yo, lo). Indeed, for each
string a(xo)a(x1)...a(yo) thus generated, the elements xi belong to STi(xo)=Mixo,p (see figure 5),
consequently, this string is the shortest trajectory.

To prove that all the shortest trajectories are generated by Gt
(1) let us conduct the following

preliminary discussion. As it was already mentioned above, all substrings of the shortest trajectory
are the shortest trajectories with the beginning at xo and ending at xi (i=1, 2,..., lo). Taking into
account the symmetry of the relation Rp, all reversed substrings with the beginning at yo and
ending at xi (i=lo-1, lo-2,...,1, 0) will also be the shortest

lo-i
trajectories. Consequently, xi belongs to Myo,p.

This means that for any shortest trajectory a(xo)a(x1)...a(yo) from tp(xo,yo,lo) xi belongs
i lo-i

 to the intersection of Mxo,p and Myo,p, i.e., MAPxo,p(xi)=i and MAPyo,p(xi)=lo-i,and,
consequently,

MAPxo,p(xi)+MAPyo,p(xi)=lo. (6)
Conversely, if for a certain x from X (6) takes place, then x necessarily enters into the set

P(ti) parametric values of at least one shortest trajectory ti from tp(xo, yo, lo). This follows from
the fact that MAPxo,p(x)≥0 and MAPyo,p(x)≥0, while their sum is equal to lo. That is to say,
there exists j (0≤j≤lo), such that MAPxo,p(x)=j, MAPyo,p(x)=lo-j. Then there exist two shortest
trajectories t1 from tp(xo, x, j) and t2 from tp(yo, x, lo-j). The trajectory t3 from tp(x, yo, lo-j)
constructed of the same symbols as t2, but in the reversed order, will also be the shortest
trajectory. The concatenation of t1 and t2 gives the sought shortest trajectory containing x.

Thus, any element of the set X enters into the set of parametric values UP(ti)
ti

for all the shortest trajectories ti from tp(xo, yo, lo) if and only if (6) is true. These arguments lay a
basis for the algorithm for computing the function nexti(x, l) (figure 5).

Next we shall use induction again. Obviously, the grammar of trajectories generates the first
symbol a(xo) of all shortest trajectories from tp(xo, yo, lo). Assume that it generates the m first
symbols of any shortest trajectory from tp(xo, yo, lo). We shall show that it generates also the
(m+1)st symbol a(xm).

We have: MOVE(xm-1) is an intersection of ST1(xm-1), STm(xo) and SUM. Since
 tp(xo, yo, lo) are the shortest trajectories, xm belongs to STm(xo)=Mmxo,p. But xm also belongs to
SUM, because of (6), and xm belongs to ST1(xm-1)=M1xm-1,p since Rp(xm-1, xm)=T by definition
of trajectory. Thus, xm belongs to MOVE(xm-1), i.e., the (m+1)st symbol is generated by the
grammar Gt

(1) .
The theorem is proved.

LANGUAGES OF TRAJECTORY NETWORKS
After defining the Language of Trajectories, we have new tools for the breakdown of our

System into subsystems. According to the ideas presented in (Botvinnik, 1975, 1984), these
subsystems should be various types of trajectory networks, i.e., some sets of interconnected
trajectories with one singled out trajectory called the main trajectory. An example of such a network
is shown in figure 9.

1

2

3

4

57

6

9
8

10

11

13
12

q

q

q
q

p

p
p

0

1

2

2

43

1

Figure 9. Network language interpretation

The basic idea behind these networks is as follows. Element po should move along the main
trajectory a(1)a(2)a(3)a(4)a(5) to reach the ending point 5 and remove the target q4 (an opposite
element). Naturally, the opposite elements should try to disturb those motions by controlling the
intermediate points of the main trajectory. They should come closer to these points (to the point 4
in figure 9) and remove element po after its arrival (at point 4). For this purpose, elements q3 or q2
should move along the trajectories a(6)a(7)a(4) and a(8)a(9)a(4), respectively, and wait (if
necessary) on the next to last point (7 or 9) for the arrival of element po at point 4. Similarly,
element p1 of the same side as po might try to disturb the motion of q2 by controlling point 9 along
the trajectory a(13)a(9). It makes sense for the opposite side to include the trajectory
a(11)a(12)a(9) of element q1 to prevent this control.

Similar networks are used for the breakdown of complex systems in different areas. Let us
consider a syntactic representation of such networks. The Language of Trajectories describes "one-
dimensional" objects by joining symbols into a string employing reachability relation Rp(x, y). To
describe networks, i.e., “multi-dimensional" objects made up of trajectories, we use the relation of
trajectory connection.

A trajectory connection of the trajectories t1 and t2 is the relation C(t1,t2). It holds, if the
ending link of the trajectory t1 coincides with an intermediate link of the trajectory t2; more

precisely t1 is connected with t2, if among the parameter values P(t2)={y,y1,…,yl} of trajectory t2
there is a value yi = xk, where t1=a(xo)a(x1)…a(xk). If t1 belongs to some set of trajectories with
the common end-point, than the entire set is said to be connected with the trajectory t2.

For example, in figure 9 the trajectories a(6)a(7)a(4) and a(8)a(9)a(4) are connected with the
main trajectory a(1)a(2)a(3)a(4)a(5) through point 4. Trajectories a(13)a(9) and a(11)a(12)a(9)
are connected with a(8)a(9)a(4).

A set of trajectories CAB(t) from B, with which trajectory t is connected, is called the bundle
of trajectories for trajectory t relative to the set B of trajectories.

To formalize the trajectory networks we should define some routine operations on the set of

trajectories: a k-th degree of connection and a transitive closure.
A k-th degree of the relation C on the set of trajectories A (denoted by CA

k) is defined
as usual by induction.

For k = 1 CA
k(t1,t2) coincides with C(t1,t2) for t1,t2 from A.

For k > 1 CA
k(t1,t2) holds if and only if there exists a trajectory t3 from A, such that C(t1,t3)

and CA
k-1(t3,t2) both hold.

Trajectory a(11)a(12)a(9) in figure 9 is connected (degree 2) with trajectory
a(1)a(2)a(3)a(4)a(5), i.e., C2(a(11)a(12)a(9), a(1)a(2)a(3)a(4)a(5)) holds.

A transitive closure of the relation C on the set of trajectories A (denoted by CA
+) is a

relation, such that CA
+(t1,t2) holds for t1 and t2 from A, if and only if there exists i > 0 that

CA
i(t1,t2) holds.

The trajectory a(10)a(12) in figure 9 is in transitive closure to the trajectory
a(1)a(2)a(3)a(4)a(5) because C3(a(10)a(12), a(1)a(2)a(3)a(4)a(5)) holds by means of the chain
of trajectories a(11)a(12)a(9) and a(8)a(9)a(4).

A trajectory network W relative to trajectory to is a finite set of trajectories to,t1,…,tk
from the language Lt

H(S) that possesses the following property: for every trajectory ti from W (i =
1, 2,…,k) the relation CW

+(ti,to) holds, i.e., each trajectory of the network W is connected with
the trajectory to that was singled out by a subset of interconnected trajectories of this network. If
the relation CW

m(ti, to) holds, trajectory ti is called the m negation trajectory.
Obviously, the trajectories in figure 9 form a trajectory network relative to the main trajectory

a(1)a(2)a(3)a(4)a(5). We are now ready to define network languages.
A family of trajectory network languages LC(S) in a state S of the Complex System

is the family of languages that contains strings of the form
t(t1, param)t(t2, param)…t(tm, param),

where param in parentheses substitute for the other parameters of a particular language. All the
symbols of the string t1, t2,…, tm correspond to trajectories that form a trajectory network W
relative to t1.

Different members of this family correspond to different types of trajectory network
languages, which describe particular subsystems for solving search problems. One of such
languages is the language that describes specific networks called Zones. They play the main role in
the model considered here (Botvinnik, 1984), (Stilman, 1977, 1993c, 1993d). A formal definition
of this language is essentially constructive and requires showing explicitly a method for generating
this language, i.e., a certain formal grammar. The definition of this grammar is beyond the scale of
this paper (see Stilman, 1993c). Below we define the Language of Zones informally.

A Language of Zones is a trajectory network language with strings of the form
 Z=t(po,to,τo) t(p1,t1,τ1)…t(pk,tk,τk),

where to,t1,…,tk are the trajectories of elements po,p2,…,pk respectively; τo,τ1,…,τk are positive
integer numbers (or 0) which “denote the time allocated for the motion along the trajectories in a
correspondence to the mutual goal of this Zone: to remove the target element – for one side, and to
protect it – for the opposite side. Trajectory t(po,to,τo) is called the main trajectory of the Zone. The
element q standing on the ending point of the main trajectory is called the target. The elements po
and q belong to the opposite sides.

Consider Zone corresponding to the trajectory network shown in figure 9:
Z =t(po, a(1)a(2)a(3)a(4)a(5), 4)t(q3, a(6)a(7)a(4), 3)t(q2, a(8)a(9)a(4), 3)t(p1, a(13)a(9), 1)

t(q1, a(11)a(12)a(9), 2) t(p2, a(10)a(12), 1)
Assume that the goal of the white side is to remove target q4, while the goal of the black side is to
protect it. According to these goals element po starts the motion to the target, while blacks start in
its turn to move their elements q2 or q3 to intercept element po. Actually, only those black
trajectories are to be included into the Zone where the motion of the element makes sense, i. e., the

length of the trajectory is less than the amount of time (third parameter τ) allocated to it. For
example, the motion along the trajectories a(6)a(7)a(4) and a(8)a(9)a(4) makes sense, because
they are of length 2 and time allocated equals 3: each of the elements has 3 time intervals to reach
point 4 to intercept element po assuming one would go along the main trajectory without move
omission. According to definition of Zone the trajectories of white elements (except po) could only
be of the length 1, e.g., a(13)a(9) or a(10)a(12). As far as element p1 can intercept motion of the
element q2 at the point 9, blacks include into the Zone the trajectory a(11)a(12)a(9) of the element
q1, which has enough time for motion to prevent this interception. The total amount of time
allocated to the whole bunch of black trajectories connected (directly or indirectly) with the given
point of main trajectory is determined by the number of that point. For example, for the point 4 it
equals 3 time intervals.

 Formalization of the Trajectory Network Languages allowed us to state formally and
approach a solution of the problem of efficient adjustment of the hierarchy of languages when
system moves from one state to another (Stilman, 1993d). For the chess model this problem is as
follows. What Zones and trajectories should be changed (entirely or in part) and what – should not
when model moves from one position to another during the search? This problem is relative to the
notorious Frame Problem in Artificial Intelligence (McCarthy, Hayes, 1969).

ZONES IN THE CHESS MODEL
Let us consider an example of the Language of Zones for the chess model. We are going to

present this language informally, listing Zones and trajectories, without explicit generating by the
Grammar of Zones. An artificial chess position is shown in figure 10.

++

+

+

Figure 10. Interpretation of the Language of Zones for chess model.

Assuming that, the so-called horizon, H = 2 steps, in this range of lengths the only couple of
attacking and attacked pieces are the Bishop on f2 and Pawn on e5, respectively. Thus, only such
Zones can be generated. Trajectories a(f2)a(g3)a(e5) and a(f2)a(d4)a(e5) for the Bishop are the
main trajectories of these Zones. They are shown by bold lines. All the other lines shown in figure
10 single out one Zone of the bundle of Zones generated by the grammar. The black side can
intercept the Bishop employing one of the various intercepting trajectories, the first negation
trajectories. For example, the interception on square g3 can be accomplished by the black pieces
located in the range of two steps from g3. (By definition of Zone it is generated in assumption that
the protecting side is to move.) Thus one of the Knight’s trajectories from g7 to g3,
a(g7)a(f5)a(g3) or a(g7)a(h5)a(g3), should be included into this Zone. Similarly either
a(g7)a(e6)a(d4), or a(g7)a(f5)a(d4) can be included to intercept Bishop on d4. The last chance for
interception is to approach the target, Pawn on e5, in 3 steps. It can be done by the King on b7

along one of two trajectories, a(b7)a(c6)a(d5)a(e5) or a(b7)a(c7)a(d6)a(e5). There are no other
trajectories to prevent the attack. White side should include its own trajectories to support the
attack, i.e., the motion of the Bishop along one of the main trajectories. By definition of Zone they
are in the range of one step only. They are a(h2)a(g3), a(g4)a(h5) (if a(g7)a(h5)a(g3) was
included) or a(g4)a(f5) (in case of a(g7)a(f5)a(g3)).

LANGUAGES OF SEARCHES
To describe the search for the optimal operational variant of the System, we define a family

of languages of searches. Each search, the string of this language, represents a search tree of
variants created to find a solution of some search problem. Assume there is one-to-one
correspondence between searches and search trees, neglecting possible repetitions of states.

A Family of Languages of Searches is the following five-tuple:
(π (i1)π (i2)…π (im), Son , Brother, Father, other functions),

where π (ik) denote branches of some tree and for each in:
Son(in)=0 if π (in) represents a leaf branch, Son(in)= in+1 in the other cases; it means

that π (in+1) is the left-most child branch for π (in);
Father(in)=0 if π (in) is a root branch (without parent), for the remaining n Father(in) =

ir, where π (ir) is parent branch for π (in);
Brother(in)=0 if the branch π (Father(in)) has the only child branch π (in), Brother(in) =

π (ir), where π(ir) is the next right child branch of the same parent π (Father(in)).
The list of certain other functions singles out a specific language of searches, a member of this
family (or sub-family of languages).

The tree shown in figure 11 corresponds to the following search:
(π (1)π (2)π (3)π (4)π (5)π (6)π (7)π (8)π (9), Son , Father, Brother)

Son(1)=2, Father(1)=0, Brother(1)=3;
Son(2)=0, Father(2)=1, Brother(2)=0,

and so on.

π(1)

π(2)

π(3)

π(4) π(5)

π(7)

π(6)

π(8) π(9)

Figure 11. Interpretation of the Language of Searches

Assume that we have a Complex System, searching a space of states.
A Family of Languages of Transitions is the sub-family of Languages of Searches of

the following form:
(π (i1)π (i2)…π (im), Son, Brother, Father, TRANSITIONS, other functions),

where TRANSITIONS denotes the set of operators Tj=TRANSITION(pj,x j,y j) of the Complex
System, and each Tj corresponds one-to-one to the π (ij).

Thus, the states of the Complex System correspond to the nodes of search trees. Varying the
list of other functions we can define members of this family which represent various well-known

methods of search. First, it is important to single out a subfamily of languages of reduced searches
whose members represent different algorithms of selective search. Among the members of this
subfamily there are languages corresponding to brute force search down to some depth, depth-first
search with forward pruning, alpha-beta search, dynamic programming and others. For all these
languages it is necessary to write generating grammars.

As a member of the same family a Language of Translations is defined. It is the highest-level
language of the Hierarchy of Languages considered here. This language contains searches
generated by the following search procedure (Botvinnik, 1984). We describe it informally.

The search procedure operates by moving the elements of the Complex System along the
trajectories of Zones. The Language of Zones is adjusted by translations. The current variant of the
search lasts until there still exists possibility to withdraw at least one target element of Zones.
However, the variant can not be continued if current losses in this variant, i.e., the value of m(S)
from (1), is greater than the expected gain, the sum of values v(pi) of targets of Zones. This is a
depth-first search procedure. Thus transition-ordering constraints are established. If one transition
is judged to be superior to its siblings it should be searched first. The transitions with low scores
should be pruned. These scores are based on the notion of "vulnerability" of trajectories and
Zones, i.e. on a forecast of achieving local goals along trajectories and in entire Zones. Pruning
conditions depend on the same forecast and the results of the "inspection procedure" of visiting the
subtree already generated, to discover the impossibility of improvement their minimax value (by
considering new searches in combinations of Zones). All those procedures are built into the
grammar generating the Language of Translations. Next we demonstrate the generation in the
Language of Translation on example of the Reti endgame.

RETI ENDGAME SEARCH
The R.Reti endgame is shown in figure 12. The search tree shown in figure 13 was

generated by program PIONEER in 1977 and presented at the World Computer Chess
Championship (joint event with IFIP Congress 77, Toronto, Canada). Later it was published in
different journals and books, in particular, in (Botvinnik, 1984). We consider this tree as a string
of the Language of Translations and comment on its generation.

+

+

Figure 12. The R. Reti endgame. Draw

First, the Language of Zones in the start position is generated. The targets for attack are
determined within the limit of five steps. It means that the horizon H of the language LZ(S) is equal
to 5, i.e., the length of main trajectories of all Zones must not exceed 5 steps. All the Zones
generated in the start position are shown in figures 14: Zones for Kings as attacking pieces are
shown in the left diagram, while Zones for Pawns – in the right one. For example, one of the

c6-c7 Ka6-b7

c7-c8Q

Kh8-g7

Kh8-g8

Kb7:c8

Kb7:c7

Kb7:c7

-200

-200

-200

Kh8-g7

Ka6-b7 c6:b7

Ka6-b6

c6-c7 Kb6:c7

Kg7-f6 h5-h4

Kb6:c6

c6-c7 Kb6:c7

Kf6-e6 Kb6:c6

Kb6-c7

Kb6-b7

Kf6-e5 Kb6:c6

h4-h3

Kb6-b7

200

-200

0

-200

-200

0

0

0

0

0

h5-h4 c6-c7 Ka6-b7

c7-c8Q Kb7:c8
-200

-200

-200

Kg7-f6 Kb7:c7

Kg7-f7 Kb7:c7

Kg7-f6

Ka6-b7 c6:b7 200

Ka6-b6 c6-c7 Kb6:c7

Kf6-e6 Kb6:c6

Kf6-e5 Kb6:c6

h4-h3

Kb6-c7

Kb6-b7

h4-h3

Ka6-b5 c6-c7 h5-h4 c7-c8Q

-200

-200

0

0

0

0

8

0

Figure 13. Search tree for the R.Reti endgame

Zones for pawn promotion ZWP is as follows:
ZWP=t(P, a(c6)a(c7)a(c8), 2)t(K, a(a6)a(b7)a(c8), 3)t(K, a(a6)a(b7)a(c7), 2)t(P, a(c6)a(b7), 1)
The second trajectory of the King a(a6)a(b6)a(c7) leading to the square c7 is included into
different Zone; for each Zone only one trajectory from each bundle of trajectories is taken.

+

+

+

+

Figure 14. An interpretation of the Zones in the starting position of the R.Reti endgame

Generation begins with the move 1. c6-c7 in the “white” Zone with the target of the highest
value and the shortest main trajectory. The order of consideration of Zones and particular
trajectories is determined by the grammar of translations. The computation of move-ordering
constraints is the most sophisticated procedure in this grammar. It takes into account different
parameters of Zones, trajectories, and the so-called chains of trajectories.

++

+

+

Figure 15. Positions where control Zone from h8 to c8 was detected (left) and
where it was included into the search (right)

Next move, 1. ... Ka6-b7, is in the same Zone along the first negation trajectory. The
interception continues: 2. c7-c8Q Kb7:c8 (figure 15, left). Here the grammar cuts this branch with
the value of -200 (as a win of the black side). This value is given by the special procedure of
“generalized square rules” built into the grammar.

Then, the grammar initiates the backtracking climb. Each backtracking move is followed by
the inspection procedure, the analysis of the subtree generated in the process of the earlier search.

After climb up to the move 1. ... Ka6-b7, the tree to be analyzed consists of one branch (of two
plies): 2. c7-c8Q Kb7:c8. The inspection procedure determined that the current minimax value (-
200) can be improved by the improvement of the exchange on c8 (in favor of white side). This can
be achieved by participation of King from h8, i.e., by generation and inclusion of the new so-
called “control” Zone with the main trajectory from h8 to c8. The set of different Zones from h8 to
c8 (the bundle of Zones) is shown in figure 15 (right). The move-ordering procedure picks the
subset of Zones with main trajectories passing g7. These trajectories partly coincide with the main
trajectory of another Zone attacking Pawn on h5. The motion along such trajectories allows to
“gain the time”, i.e., to approach two goals simultaneously.

The generation continues: 2. Kh8-g7 Kb7:c7. Again, the procedure of “square rules” cuts
the branch, evaluates it as a win of the black side, and the grammar initiates the climb. Move
2. Kh8-g7 is changed for 2. Kh8-g8. Analogously to the previous case, the inspection procedure
determined that the current minimax value (-200) can be improved by the improvement of the
exchange on c7. Again, this can be achieved by the inclusion of Zone from h8 to c7. Of course the
best “time-gaining” move in this Zone is 2. Kh8-g7, but it was already included (as move in the
Zone from h8 to c8). The only untested move in the Zone from h8 to c7 is 2. Kh8-g8. Obviously
the grammar does not have knowledge that trajectories to c8 and c7 are “almost” the same.

After the next cut and climb, the inspection procedure does not find new Zones to improve
the current minimax value, and the climb continues up to the start position. The analysis of the
subtree shows that inclusion of Zone from h8 to c8 in the start position can be useful: the minimax
value can be improved. Similarly, the most promising “time-gaining” move is 1. Kh8-g7. The
black side responded 1. ... Ka6-b7 along the first negation trajectories Ka6-b6-c7 and Ka6-b6-c8
(figure 14 (right)). Obviously, 2. c6:b7, and the branch is cut. The grammar initiates the climb and
move 1. ... Ka6-b7 is changed for 1. ... Ka6-b6 along the trajectory Ka6-b6-c7. Note, that
grammar “knows” that in this position trajectory Ka6-b6-c7 is active, i.e., the King has enough
time for interception. The following moves are in the same Zone of Pawn promotion: 2. c6-c7
Kb6:c7. This position is shown in figure 16 (left). The “square rule procedure” cuts this branch
and evaluates it as a win of the black side.

++

+

+

Figure 16. Positions where control Zone from g7 to c7 was detected (left) and
where it was included into the search (right).

 New climb up to the move 2. ... Ka6-b6 and execution of the inspection procedure result in
the inclusion of the new control Zone from g7 to c7 in order to improve the exchange on c7. The
set of Zones with different main trajectories from g7 to c7 is shown in figure 16 (right). Besides
that, the trajectories from g7 to h4, h3, h2, and h1 are shown in the same figure. These are
“potential” first negation trajectories. It means that beginning with the second symbol a(f6), a(g6)
or a(h6) these trajectories become first negation trajectories in the Zone of promotion of the Pawn

h5. Speaking informally, from squares f6, g6, and h6 the King can intercept the Pawn (in case of
white move). The move-ordering procedure picks the subset of Zones with the main trajectories
passing f6. These trajectories partly coincide with the potential first negation trajectories. The
motion along such trajectories allows to “gain the time”, i.e., to approach two goals
simultaneously. Thus, 2. Kg7-f6.

 CONCLUSION
The approach to understanding of the game of chess considered here encompasses the

discovery of geometrical properties of subsystems and details of interactions between the elements
within subsystems, and between different subsystems. We can understand the details of influence
of this complex hierarchical structure on the dramatic reduction of the search. Most importantly, the
following development of this approach should allow a better understanding of the solution
quality.

This contribution to the development of formal language tools for the representation and
analysis of human search heuristics should allow for the expansion of advanced human heuristic
methods discovered in different complex systems to other real-world systems where existing
methods are not sufficient.

References
Botvinnik, M.M. (1970) Chess, Computers and Long-Range Planning, Springer-Verlag, New

York.
 (1975) On the Cybernetic Goal of Games, Soviet Radio, Moscow, (in Russian).
 (1984) Computers in Chess: Solving Inexact Search Problems. Springer Series in Symbolic

Computation, Springer-Verlag, New York.
Chapman, D. (1987) Planning for conjunctive goals, Artificial Intelligence 32(3).
Chomsky, N. (1963) Formal Properties of Grammars, in Handbook of Mathematical Psychology,

ed. R.Luce, R.Bush, E. Galanter., vol. 2, pp. 323-418, John Wiley & Sons, New York.
Feder, J. (1971) Plex languages, Information Sciences 3, 225–241.
Fikes, R.E. & N.J. Nilsson, N.J. (1971) STRIPS: A New Approach to the Application of

Theorem Proving in Problem Solving, Artificial Intelligence 2, 189–208.
Fu, K.S. (1982) Syntactic Pattern Recognition and Applications, Prentice Hall, Englewood Cliffs.
Ginsburg, S. (1966) The Mathematical Theory of Context-Free Languages, McGraw Hill, New

York.
Knuth, D.E. (1968) Semantics of Context-Free Languages, Mathematical Systems Theory 2(2)

127–146.
McAllester, D. & Rosenblitt, D. (1991), Systematic Non-Linear Planning, Proc. of AAAI-91,

634-639.
McCarthy, J. (1980) Circumscription – A Form of Non-Monotonic Reasoning, Artificial

Intelligence 13, 27-39.
McCarthy, J. & Hayes, P.J. (1969) Some Philosophical Problems from the Standpoint of

Artificial Intelligence, Machine Intelligence 4, 463–502.
Narasimhan, R.N. (1966) Syntax–Directed Interpretation of Classes of Pictures, Communications

of the ACM 9, 166–173.
Nilsson, N.J. (1980) Principles of Artificial Intelligence, Tioga Publ., Palo Alto, CA.
Pavlidis, T. (1972) Linear and Context-Free Graph Grammars, Journal of the ACM 19, 11-22.
Pfaltz, J.L. & A. Rosenfeld, A. (1969) WEB Grammars, Proceedings of the 1-st International

Joint Conference on Artificial Intelligence, Washington, D.C., 609–619.
Rozenkrantz, D.J.,(1969) Programmed Grammars and Classes of Formal Languages, Journal of

the ACM 16(1), 107–131.
Sacerdoti, E.D. (1975) The Nonlinear Nature of Plans, Proceedings of the International Joint

Conference on Artificial Intelligence.
Shaw, A.C. (1969) A Formal Picture Description Scheme as a Basis for Picture Processing

System, Information and Control 19, 9-52.
Stefik, M. (1981) Planning and meta-planning (MOLGEN: Part 2), Artificial Intelligence, 16(2),

141-169.
Stilman, B. (1977) The Computer Learns, in the book: 1976 US Computer Chess Championship,

pp. 83-90, by Levy, D., Computer Science Press, Woodland Hills, CA.
 (1985) Hierarchy of Formal Grammars for Solving Search Problems, in Artificial

Intelligence. Results and Prospects, Proceedings of the International Workshop, Moscow,
63–72, (in Russian).

 (1992a) A Syntactic Structure for Complex Systems, Proc. of the Second Golden West
International Conference on Intelligent Systems, Reno, NE, 269-274.

 (1992b) A Geometry of Hierarchical Systems: Generating Techniques, Proc. of the Ninth
Israeli Conference on Artificial Intelligence and Computer Vision, Tel Aviv, Israel, 95-109.

 (1992c) A Syntactic Approach to Geometric Reasoning about Complex Systems, Proc. of the
Fifth International Symposium on Artificial Intelligence, Cancun, Mexico, 115-124.

 (1993a) Linguistic Tools for Intelligent Systems, Proc. of the Seventh Int. Symp. on
Methodologies for Intelligent Systems (Poster Session), Trondheim, Norway, 125-139.

 (1993b) A Linguistic Approach to Geometric Reasoning, Int. J. Computers and Mathematics
with Applications, (to appear).

 (1993c) Network Languages for Complex Systems, Int. J. Computers and Mathematics with
Applications, (to appear).

 (1993d) Translations of Network Languages, Int. J. Computers and Mathematics with
Applications, (to appear).

 (1993e) A Syntactic Hierarchy for Robotic Systems, Integrated Computer-Aided
Engineering, (to appear).

Volchenkov, N.G. (1979) The Interpreter of Context-Free Controlled Parameter Programmed
Grammars, in L.T. Kuzin, ed., Cybernetics Problems. Intellectual Data Banks ,The USSR
Academy of Sciences, Moscow, 147–157 (in Russian).

