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Abstract

The objective of the research considered in this paper is to develop a theoretical foundation
for the representation of large-scale hierarchical complex systems, so-called Linguistic Geometry.
The research relies on the formalization of heuristics of high-skilled human experts which have
resulted in the development of successful decision support systems. This approach is based on a
broad application of the theory of formal languages and grammars as well as theories of formal
problem-solving and planning on the basis of the first-order predicate calculus. This paper reports
new results in the investigation of geometrical properties of the first-level subsystems (paths of
elements) unified as Surface Linguistic Geometry. Theoretical constructions considered in this
paper are illustrated employing comprehensive examples from power maintenance scheduling,
robot control, chess game. A program implementation of this approach should generate decision
support systems for a wide class of practical problems.

Keywords: complex systems, hierarchical systems, linguistic geometry, formal languages and
grammars, search problems, problem representation, planning and scheduling, robot control.

1. Introduction

A great number of real-world problems such as long and short-range planning (especially
for autonomous navigation), scheduling, integrated circuits layout, robot control, combat
operations control, etc. might be formally represented as problems of reasoning about complex
large-scale systems. There are many such problems where human expert skills in reasoning about
complex systems are incomparably higher than the level of modern computing systems. Very often
human skills show advances in reasoning about geometrical properties of such systems. At the
same time there are even more areas where advances are required but human problem-solving skills
can not be directly applied. For example, there are problems of tactics planning and automatic
control of autonomous agents such as space vehicles, stations and robots with cooperative and
opposing interests functioning in a complex, hazardous environment. Reasoning about such
complex systems should be done automatically, in a timely manner, and often in a real time.
Moreover, there are no high-skilled human experts in these fields ready to substitute for robots (on
a virtual model) or transfer their knowledge to them. There is no grand-master in robot control,
although, of course, the knowledge of existing experts in this field should not be neglected – it is
even more valuable. Due to the special significance of these problems with regard to national
security and the fabulous costs of mistakes, the quality of solutions must be very high and usually
subject to continuous improvement.

 In this respect it is very important to study human expert reasoning about similar complex
systems in the areas where the results are successful, in order to discover the keys to success, and
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then apply and adopt these keys to the decision support systems for the new, as yet, unsolved
problems, and first and foremost to the critical complex systems. It should be considered as
investigation, development, and consequent expansion of advanced human expert skills into new
areas.

The difficulties we meet trying to find optimal operation for real-world complex systems are
well known. While the formalization of the problem, as a rule, is not difficult, an algorithm that
finds its solution usually results in the search of many variations. For small-dimensional "toy"
problems a solution can be obtained; however, for most real-world problems the dimension
increases and the number of variations increases significantly, usually exponentially, as a function
of dimension [1]. Thus, most real-world search problems are not solvable with the help of exact
algorithms in a reasonable amount of time.

There have been many attempts to design different approximate algorithms. One of the basic
ideas is to decrease the dimension of the real-world system following the approach of a human
expert in a certain field, by breaking this system down into subsystems, to study these subsystems
separately or in combinations, making appropriate searches, and eventually combining optimal
solutions for the subsystems as an approximately optimal solution for the whole system [2], [3],
[4]. These ideas have been implemented for many problems with varying degrees of success, but
each implementation was unique. There was no general constructive approach for such
implementations. Each new problem was carefully studied and previous experience usually could
not be applied. Basically we could not answer the question: what are the formal properties of
human heuristics which drove us to a successful hierarchy for a given problem and  how can we
apply the same ideas in a different problem domain. On the other hand, every attempt to evaluate
the computational complexity and quality of a pilot solution necessitates implementing its program,
which in itself is a unique task for each problem.

In the early 1960’s a formal syntactic approach to the investigation of properties of the
natural language caused fast development of the theory of formal languages by Chomsky [5],
Ginsburg [6], and others [7, 8]. This development provided an interesting opportunity of
dissemination of this approach to different areas. In particular, there came an idea of analogous
linguistic representation of images. This idea was successfully developed into syntactic methods of
pattern recognition by Fu [9, 10], Narasimhan [11], and Pavlidis [12], and picture description
languages by Shaw [13], Feder [14], and Phaltz [15]. The power of a linguistic approach might be
explained, in particular, by the recursive nature and expressiveness of the language generating
rules, i.e., formal grammars.

Searching for the adequate mathematical tools formalizing human heuristics of dynamic
hierarchy, we transformed the idea of linguistic representation of complex real-world and artificial
images into the idea of similar representation of complex hierarchical systems [20-22]. However,
the appropriate languages should possess more sophisticated attributes than languages usually used
for pattern description. They should describe mathematically all of the essential syntactic and
semantic features of the system and search, and be easily generated by certain controlled
grammars. The origin of such languages can be traced back to the origin of SNOBOL-4
programming language and the research on programmed attribute grammars and languages by
Knuth [7], Rozenkrantz [8], and Volchenkov [16].

A mathematical environment (a “glue”) for the formal implementation of this approach was
developed following the theories of formal problem solving and planning by Nilsson, Fikes [17],
Sacerdoti [18], and McCarthy, Hayes [19] on the basis of the first order predicate calculus.

To show the power of this approach it is important that the chosen model of the heuristic
hierarchical system be sufficiently complex, poorly formalized, and have successful applications in
different areas. Just that very model was developed by Botvinnik, Stilman, and others and
successfully applied to scheduling, planning, and computer chess. The hierarchical constructions
were introduced in [4] in the form of ideas and plausible discussions.

An application of the hierarchy of languages to the chess model was implemented in full as
program PIONEER [4, 20]. The results shown by this program in solving complex endgames and
middle-game chess positions are not been achieved by other well-known computer chess programs
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based on the alpha-beta search algorithms, e.g., by current and former World Computer Chess
Champions. In order to solve these problems PIONEER showed a very deep selective search with
the branching factor close to 1, while all the conventional chess programs based on non-selective
search algorithms can not “survive after combinatorial explosion”.

The hierarchy of languages was implemented for the power equipment maintenance in a
number of computer programs being used for maintenance scheduling all over the USSR [21, 22,
20]. They set up monthly and yearly maintenance plans of good quality and in reasonable
processing time. The comparison with analogous programs based on branch-and-bound search
strategies showed the advantage of this approach for monthly planning: the quality of the plan was
about the same, but the computation time was essentially shorter. In all experiments the branching
factor of the search trees generated by conventional programs was substantially higher. For yearly
planning problems, the competition failed, because the conventional programs based on branch-
and-bound and dynamic programming search algorithms could not overcome the combinatorial
explosion for such a higher-dimensional problem.

The results shown by the applications in solving complex chess and scheduling problems
indicate that implementations of the hierarchy of languages resulted in the extremely goal-driven
algorithms generating search trees with the branching factor close to 1. Thus, formal linguistic
tools presented in this paper deserve theoretical investigation and development in order to discover
the inner properties of human expert heuristics, which were successful in a certain class of
complex systems.

Dynamic hierarchical systems were developed independently for different problems [2, 3].
But their representation was either informal or non-constructive. Still more such systems might be
introduced for another real-world search problems pursuing the same general goal of reducing the
search by breaking down complex system into subsystems. That is why we see the general need
and applicability of this approach, and consider current research as a model for further
generalization and applications. 

2. Scientific objectives: informal review

The purpose of Linguistic Geometry is to develop a formal and a general approach for a
certain class of complex systems that involves breaking down a system into dynamic subsystems.
This approach does not immediately give us powerful tools for reducing the search in different
complex problems. It does give us a set of tools to be used for the formal description of problems
where successful results had already been achieved due to the informal plausible reasoning of some
human expert. This reasoning should involve the decomposition of a complex system into a
hierarchy of dynamic interacting subsystems. The set of tools permits us to study this hierarchy
formally, to investigate general and particular properties of such hierarchies, to prepare a
framework for the evaluation of the complexity and quality of solutions, improve them, if
necessary, and generate computer programs for specific applications. This approach provides us
with an opportunity to transfer formal properties and constructions discovered in one problem to a
new one and to apply the same tools to the new problem domain. It actually looks like an
application of the methods of a chess expert to a robot control or maintenance scheduling and vice
versa. But what about guaranties of success? The guaranties reside in the deeper studies of these
methods, in the discovery of inner properties that brought us a success for a certain class of
complex systems.

The class of problems to be studied are problems of optimal operation of a complex system.
This system is considered as a twin-set of elements and points where elements are units moving
from one point to another. It is a very general representation, e.g., in robot control problems
elements are autonomous robots moving along the points of the complex hazardous environment
on the surface or in space. The elements are divided into two opposite sides; the goal of each side
is to attack and destroy opposite side elements and to protect its own. Each side aims to maximize a
gain, the total value of opposite elements destroyed and withdrawn from the system. Such a
withdrawal happens if an attacking element comes to the point where there is already an element of
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the opposite side.
A one-goal, one-level system should be substituted for a multi-goal multi-level system by

introducing intermediate goals and breaking the system down into subsystems striving to attain
these goals. The goals of the subsystems are individual but coordinated within the main mutual
goal. For example, each second-level subsystem includes elements of both sides: the goal of one
side is to attack and gain some element (a target), the other side tries to protect it. In the robot
control, it means the selection of a couple of robots of opposing sides: one – as an attacking
element, and the other – as a local target, generation of the paths for approaching the target, as well
as the paths of other robots supporting the attack or protecting the target.  The pruning criteria of
the search for an optimal operation in such subsystems and evaluation function are coordinated
with the intermediate subsystem's goals and the main goal of the system.

3.  A survey of the hierarchy of languages

A set of dynamic subsystems might be represented as a hierarchy of formal languages where
each "sentence" (a group of "words" or symbols) of the lower level language corresponds to the
"word" of the higher level one. This is a routine procedure in our native language. For example,
the phrase "A man who teaches students" creates a hierarchy of languages. A lower level language
is a native language without the word "professor." The symbols of this language are all the English
words (except "professor"). A higher level language might be the same language with one extra
word "A-man-who-teaches-students". Instead, we can use the word "professor" which is simply a
short designation of this long word.

Following a linguistic approach each first level subsystem should be represented as a string
of symbols with parameters:

a(x1)a(x2)...a(xn),        (3.1)
where values of parameters incorporate the semantics of the problem domain. They form the so-
called Language of Trajectories. For example, for the lower level subsystems in the chess model:
x1, x2,..., xn are the coordinates of squares of the chess board and a(x1)a(x2)...a(xn) represents a
trajectory (a planning path) of a chess piece from the square x1 to xn through squares of stops x2,
x3,..., xn-1. For the robot control problem xi are the coordinates of the basic points of the robot’s
planning path. For the maintenance scheduling problem an analogous string represents a
maintenance schedule variant for a specific power unit, where x1, x2, ..., xn correspond to the
particular days of the scheduling period.

The following sections of this paper are devoted to the development of formal linguistic
techniques and their application to the investigation of geometrical properties of the Language of
Trajectories.

Let us outline briefly a representation of the higher level subsystems of the complex system.
(A formal comprehensive survey is presented in [20, 24].) A second level subsystem should be
represented as a similar string with parameters:

t(p1, t1, f1)t(p2, t2, f2)...t(pk, tk, fk),  (3.2)
where values of parameters again incorporate the semantics of the problem domain and lower level
subsystems. Symbols pi represent elements of our system (chess pieces, robots, power units,
etc.), tk represent whole trajectories (lower level subsystems) of elements pi, i.e., strings
a(x1

pi)a(x2
pi)...a(xn

pi), included in this subsystem, fi represent “time allocated for motion along the
trajectory ti.”

 Thus, using strings of (3.1), we can represent paths of system’s elements, and with the
strings of (3.2), networks of certain paths unified by the mutual goal. For example, in the chess
model such a network represents planning for a local fight, in the robot control model an analogous
network of planning paths represents a draft short-range plan for approaching local goal in
hazardous environment, i.e., getting over mobile and immobile obstacles. In the scheduling
problem it corresponds to the maintenance schedule of a certain power unit including the schedule
for the provision of resources required. Strings (3.2) form the Language of Trajectory Nets.
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The system functions by moving from one state to another; that is, the motion of an element
from one point to another causes an adjustment of the hierarchy of languages. This adjustment can
be represented as a mapping (translation) to some other hierarchy (actually to the new state of the
same hierarchy). Thus, the functioning of the system, in a process of the search, generates a tree of
translations of the hierarchy of languages. This tree can be represented as a string of the highest
level formal language, the Language of Translations.

 The search for an optimal (suboptimal) operation (i.e., optimal variant in chess, optimal
plan of the robot motion, or optimal maintenance schedule) in the new system is considered as a
process of generation and interaction of networks of the form (3.2). This process results in a
highly reduced search tree which is represented as a string of the Language of Translations,  a
member of the Family of Languages of Searches.

The advantages of linguistic representation of the complex hierarchical system become even
more apparent when we consider a development of the formal mechanism for generating this
representation. A hierarchy of languages should be generated by the hierarchy of formal grammars.
These grammars generate strings of symbols with parameters. The lists of parameters incorporate
semantics of the string: they are determined by the problem domain, e.g., squares of the
chessboard, type of the robot or obstacle, days of planning period, etc. The values of actual
parameters should be computed and assigned in a process of derivation. Thus, derivation itself
should be controlled by the state of the problem domain. This objective could be achieved by
providing the grammar with a control mechanism like subsets of productions admitted for
application at each step of derivation and conditions of applicability of the productions, i.e., certain
Well Formed Formulas (WFF) of the predicate calculus. During the derivation, this control
mechanism in its turn must be controlled by the problem domain through the values of WFF and
actual parameters of the substring, that have already been derived on the previous steps.

An approach to investigation of properties of complex hierarchical systems as
hierarchies of formal languages was called a Linguistic Geometry [20, 21, 23-25].

4. Complex Systems

DEFINITION 4.1
A Complex System is the following eight-tuple:

< X, P,  Rp,  ON, v ,  Si,  S t, TR>,
where

X={xi} is a finite set of points;
P={pi} is a finite set of elements; P is a union of two non-intersecting subsets P1 and P2;

Rp(x,y) is a set of binary relations of reachability in X ( x and y of X, p of P);
ON(p)=x, where ON is a partial function of placement from P into X;
v  is a function on P with positive integer values; it describes the values of elements;
The Complex System searches a space of states, hence, it should have initial and target

states.
Si and St are the descriptions of the initial and target states in the language of the first order

predicate calculus, which matches with each relation a certain Well-Formed Formula
(WFF). Thus, each state from Si or St is described by a certain collection of WFF of
the form {ON(pj)=xk};

TR is a set of operators TRANSITION(p, x, y) of transition of the System from one state to
another one. These operators describe the transition in terms of two lists of WFF (to be
removed and added to the description of the state), and of WFF of applicability of the
transition.
Here,

Remove list:  ON(p)=x, ON(q)=y;
Add list:  ON(p)=y;
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Applicability:  (ON(p)=x)^Rp(x,y),
where p belongs to P1 and q belongs to P2 or vice versa. The transitions are carried out
in turn with participation of elements p from P1 and P2 respectively; omission of a turn
is permitted.

According to definition of the set P, the elements of the System are divided into two subsets
P1 and P2. They might be considered as units moving along the reachable points. Element p can
move from point x to point y if these points are reachable, i.e., Rp(x,y) holds. The current location
of each element is described by the equation ON(p)=x. Thus, the description of each state of the
System {ON(pj)=xk} is the set of descriptions of the locations of the elements. The operator
TRANSITION(p, x, y) describes the change of the state of the System caused by the move of the
element p from the point x to the point y. The element q from the point y must be withdrawn
(eliminated) if p and q belong to the different subsets P1 and P2.

The problem of the optimal operation of the System is considered as a search for the optimal
variant of transitions leading from one of the initial states of Si to a target state S of St. The target
states are described with the help of the following function of states m(S). 

The values of m(S) for a target state are much bigger than for any other one (they are greater
than some constant). In our case we stipulate that

(4.1) m(S)=∑v(pi)–∑v(pj),
where pi of P1 and pj of P2 which are not withdrawn in a state S.  The same function is used to
evaluate variants of the search.

With such a problem statement for search for the optimal sequence of transitions into the
target state, we could use formal methods like those in the problem-solving system STRIPS [20] ,
nonlinear planner NOAH [14], or in subsequent planning systems, such as MOLGEN [21] or
TWEAK [22]. However the search would have to be made in a space of a huge dimension (for
nontrivial examples), i.e., in practice no solution would be obtained. We, thus, devote ourselves to
search for an approximate solution of a reformulated problem, considering our Complex System in
some sense as nearly decomposable [2].

It is easy to show that positional games such as chess and checkers might be considered as
Complex Systems (see Section 8). But it is more interesting that this specific model of the formal
linguistic approach is applicable to representing and solving a wide class of practical problems such
as power maintenance scheduling, long-range planning, operations planning, VLSI layout, and
various operations research problems [17, 18]. The idea is that the optimal variant of operation of
these real-world systems might be artificially reduced to a two-sides game where one side strives to
achieve some goal and the other is responsible for the provision of resources as shown in Sections
9-12.

5. Geometrical Properties of the Complex System

To create and study a hierarchy of dynamic subsystems we have to investigate geometrical
properties of the Complex System.

X

x

M M M

M 1
 x,p

 x,p x,p x,p
 2 3 4

Fig. 1. An interpretation of the family of reachability areas
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DEFINITION 5.1
A map of the set X relative to the point x and element p for the Complex System is the

mapping:
MAPx,p: X —> Z+ ,

(where x is from X, p is from P) which is constructed as follows. We consider a family of
reachability areas from the point x, i.e., a finite set of the following nonempty subsets of X
{Mk

x,p}:
k=1: Mk

x,p is a set of points m reachable in one step from x: Rp(x,m)=T;
k>1: Mk

x,p is a set of points reachable in k steps and not reachable in k-1 steps,  i.e., points
m reachable from points of Mk-1

x,p and not included in any Mix,p  with  numbers i less than k. 
Let

MAPx,p(y)=k,   for y from Mkx,p  (number of steps from x to y).
In the remainder points let

MAPx,p(y)=2n,   if y≠x ,  and
MAPx,p(y)=0,     if y=x.

It is easy to verify that the map of the set X for the specified element p from P defines an
asymmetric distance function on X:

1.  MAPx,p(y) > 0  for x≠y;    MAPx,p(x)=0;
2.  MAPx,p(y)+MAPy,p(z) ≥ MAPx,p(z).

 If Rp is a symmetric relation,
3.  MAPx,p(y)=MAPy,p(x),

In this case each of the elements p from P specifies on X its own metric.
A map of the set X  relative to the point x and element p for the Complex System is the

mapping:
MAPx,p: X –> Z+ ,
(where x is from X, p is from P) which is constructed as follows. We consider a family of the
areas of reachability from the point x, i.e.,the following nonempty subsets {Mk

x,p}:
k=1: Mk

x,p is a set of points m reachable in one step from x: Rp(x,m)=T;
k>1: Mk

x,p is a set of points reachable in k steps and not reachable in k-1 steps,  i.e., points
m reachable from points of Mk-1

x,p and not included in  any Mix,p  with  numbers i less then k. 
Let

MAPx,p(y)=k,   for y from Mkx,p  (number of steps from x to y).
In the remainder points let

MAPx,p(y)=2n,   if y≠x ,  and
MAPx,p(y)=0,     if y=x.

It is easy to verify that the map of of the set X for the specified element p from P defines an
asymmetric distance function on X:

1.  MAPx,p(y) > 0  for x≠y;    MAPx,p(x)=0;
2.  MAPx,p(y)+MAPy,p(z) ≥ MAPx,p(z).

 If Rp is a symmetric relation,
3.  MAPx,p(y)=MAPy,p(x),

In this case each of the elements p from P specifies on X its own metric.

6. Chess game as Complex System.
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The problem of programming of the game of chess is the most transparent example of the
Linguistic Geometry application. This problem domain with the method informally described in [1]
was actually the first application and experimental area for the formal linguistic approach. In this
model of the Complex System (Definition 4.1):

X  represents 64 squares of the chess board, i.e., n=64;
P1  and P2  are the white and black pieces;
Rp(x,  y)  are given by the rules of the game, permitting or forbidding a piece p to make a

move from a square x to a square y; thus a point x is reachable from a point y for  an
element p, if a piece p can move from a square x to a square y according to the chess
game rules;

ON(p)=x, if piece p stands on the square x;
v(p) is the value of piece p, e.g., pawn - 1, N - 3, B - 3, R - 5, Q - 9, K - 200;
S i  is an arbitrary initial chess position for analysis, or the starting position of the game;
S t is the set of chess positions which can be obtained from all possible mating positions in

two half moves by capturing of the King (suppose, this capture is permitted).
The collections of WFF {ON(pj)=xk} correspond to the lists of pieces with their
coordinates in each position.

TRANSITION(p, x, y) represents the move of the piece p from the square x to the
square y; if on y there stands a piece of the opposing color, a capture is affected.
The chess problem does not completely meet the requirements of the definition of the

Complex System.We have neglected such an important chess concept as blockade: in the Complex
System several elements (pieces of the same color) can stand on the same point (square). Besides
that, we have neglected certain specific chess features, such as castling, capture en passant, pawn
promotion, etc. All these chess complications are not crucial for our model; at the implementation
stage of the hierarchy of languages for this model (program PIONEER) all this was taken into
account [4].

Investigating the geometry of the chess system we can see that here MAPx,p(y) yields the
number of moves necessary for the piece p from the square x to reach the square y along the
shortest path. Because of symmetry of the relation Rp in this model, MAPx,p(y) specifies the
metric on the chessboard, own for each kind of piece. For a pawn the symmetry is more complex:
Rp(x,y)=Rq(y,x),
where p and q are the black and white pawn, respectively. Thus function MAP might be used as a
“ruler” to measure distances in this system for different elements.

When implementing the geometrical model for the chess problem, it was necessary to give a
tabular specification of the function MAP, in order to increase the efficiency of the program
PIONEER [4]. For this, in accordance with the relations Rp (the chess rules of movement of of the
pieces), seven square tables 15 x 15 were specified. Each of the tables was filled with the numbers
for one of the chess piece types according to the following principle: the piece is placed on the
central field of the table (0 is written there); on the remaining fields we write numbers equal to the
number of moves necessary for the piece to reach the given field from the central field along the
shortest path. These tables may be unified in the form of the following table T15(v1, v2,  f) with the
dimension 15 x 15 x 7.  (For all x of X, x=(x1, x2), x1=1, 2,..., 8,  x2=1, 2,..., 8, where x1 and
x2 correspond to files and rows of the chessboard, respectively.) Then

MAPx,p(y)=T15(v1, v2,  f),  (6.1)
 where x=(x1, x2), y=(y1, y2), v1=8–x1+y1, v2=8–x2+y2, f=f(p) is the type of the piece p (King,
Rook, etc.). Seven tables 15x15 specify on X seven different metrics.

Practically we can imagine the following procedure for the computation of (6.1). The array 8
x 8 is superimposed on the array 15 x 15 in such a way that square x coincides with the central
square of the array 15 x 15. Further, let us assume that array 8 x 8 is transparent, then on
corresponding squares we could see values of MAPx,p, i.e., the values of actual distance of these
squares from the square x.  An example of superposition of tables for x=c2 and p=Rook is shown
in Fig. 2. For details see [4].



9

 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2 

 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2
 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2
 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2
 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2
 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2
 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2

 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2

 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2
 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2
 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2
 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2
 2   2  2   2  2  2   2   1  2   2  2   2  2  2   2

 2   2  2   2  2  2   2 2   2  2   2  2  2   2   1

 1   1  1   1  1  1   1   0  1   1  1   1  1  1   1

Fig. 2. An example of superposition of tables 8 x 8 and 15 x 15 for the Rook standing on c2.

7. Autonomous robots as elements of the Complex System

A robot control model can be represented as a Complex System the similar way as chess.
X  represents the operational district. It might be the area of combat operation broken into

squares, e.g., in the form of the table 8 x 8, n=64. It might be space operation, then X
represents the set of different orbits, etc.

P is the set of robots or autonomous vehicles. It is broken into two subsets P1 and P2 with
opposing interests;

Rp(x,  y)  represent moving capabilities of different robots: robot p can move from the point
x to the point y if Rp(x, y) holds. Some of the robots can crawl, the other can jump or
ride, or even sail and fly. Some of them move fast and can reach point y (from x) in “one
step”, i.e. Rp(x, y) holds, the other can do that in k steps only, i.e., MAPx,p(y)=k, and
many of them can not reach this point at all, MAPx,p(y)=2n.

ON(p)=x, if robot p is at the point x;
v(p) is the value of robot p. This value might be determined by the technical parameters of

the robot. It might include the immediate value of this robot for the given combat
operation;

S i  is an arbitrary initial state of operation for analysis, or the starting state;
S t is the set of target states. These might be the states where robots of each side reached

specified points. On the other hand St can specify states where opposing robots of the
highest value are destroyed.

The set of WFF {ON(pj)=xk} correspond to the lists of robots with their coordinates in
each state.

TRANSITION(p, x, y)  represents the move of the robot p from the square x to the
square y; if on y there stands a robot of the opposing side, a removal is affected, i.e.,
robot on y is destroyed and removed.



10

Without going into details similar to the chess, specific tables can represent moving capabilities of
different robots. An example of distances MAPh8,K(v) for for the robot K standing on the point h8
of the set X (X is the table of 8 x 8) is shown in Fig. 3. (The moving  capabilities of this robot are
identical to the chess King.) For example, the distance from h8 to the point c6 is equal to 5.

7    6    5    4    3    2    1    0 

7    6    5    4    3    2    1    1

7    6    5    4    3    2    2    2

7    6    5    4    3    3    3    3

7    6    5    4    4    4    4    4

7    6    5    5    5    5    5    5

7    6    6    6    6    6    6    6

7    7    7    7    7    7    7    7
Fig.  3 .  Values of MAPh8,K

8. A scheduling problem as Complex System

8.1 STATEMENT OF THE PROBLEM

Here we consider a way of transformation of the different real-world system into the
Complex System.

Assume that energy-producing company is going to set up a maintenance plan for power-
producing equipment for a given planning period Tmax, e.g., month, year. There exists an array of
m demands for maintenance work of power units. The problem is to satisfy these demands. To do
that we must include the maintenance work for all the demanded units into the plan, i.e., to
schedule maintenance. A maintenance work of a power unit causes turning off of this unit, and,
consequently, a fall of generating power in the system. Thus, it is impossible to satisfy all the
demands because of problem constraints, which is basically the power reserve, e.i., the amount of
power to be lost without turning off customers. This amount varies daily.

Each demand requests maintenance work for one power unit (j-th unit) and contains three
attributes:  w j, the demanded power of the unit; hj, the fall in the operating power of the energy-
producing system because of maintenance of this unit (resources requirement); and xj

max, required
duration of maintenance. For simplicity, we neglect the rest of the demand parameters. For the
same reason we  specify the only one type of constraints the function f(i) of power reserve for the
energy-producing system, where i is the number of a day of the planning period. On the i-th day of
the planning period the total fall in the operating power, because of the maintenance of some power
units, can not be greater then the value f(i). The values of all the parameters are positive integer
numbers.

The optimum criterion of the plan is the maximum total demanded power of the units being
maintained.
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Fig. 4. Interpretation of maintenance scheduling problem as Complex System

In terms of the Complex System, this problem might be represented as a twin-set of
elements and points, as depicted in the Fig. 4. Here points form a network which is used by
elements as a "railroad" to reach certain nodes. There are two classes of elements. The first one
includes power units, depicted as white discs p1, p2, striving to reach nodes (g, 0, p1) and (g, 0,
p2) and thereby gain opposite elements q1, q2( i.e., the ones to be maintained). The other elements
of the first class are depicted as pyramids of white disks Pires: each pyramid represents a daily
stock of resources, the power reserve for the energy-producing system. The pyramids of opposite
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black discs Qij
fall represent requirements of resources, the daily fall in the operating power because

of the maintenance of the units p1 and p2. The black discs control the nodes of paths for discs p1,
p2 and able to gain any of them, i. e., maintenance can not take place without provision of
resources. It means we are forced to spend white discs of pyramids Pi

res  exchanging them in the
nodes (i, 1, r) with the black discs of Qij

fall. These actions can "clear away" the paths for power
units p1 and p2. For a closer look at this example see Section 8.3.

8.2. FORMAL REPRESENTATION

Formal representation of the Complex System for the maintenance problem is as follows:
X=(YU{g}) X Y X (PdemUQdemU{r}), where Y={0,1,...,Tmax},

Pdem is the set of power units included in the demands, |Pdem| is the number of demands.  It is
introduced a duplicate set Qdem of the elements qj, and one-to-one correspondence qj<—>pj is
established between elements of Qdem and Pdem P=P1UP2, P1 and P2 are not intersected and

 Tmax Tmax   Qdem

P1=PdemU Preserve,   P2=QdemU Qfall, Preserve=U  Pi
res,     Qfall=U      ∩ Qij

fall

  i=1   i=1      j=1

To show the number of elements |Preserve| and |Qreserve| we have to define vo . It is the quantum of
power fall (loss), the common factor of all values f(i) of power reserve and all values hj of  power
fall (for all demanded units); for example, vo=1 Megawatt. We can now determine |Preserve| and
|Qfall|, having given |Pi

res| and |Qij
fall|.  Thus, |Pi

res|=f(i)/vo  and |Qij
fall|=hj/vo .

The relation of reachability Rp(x,y)  can be given explicitly by setting the values for
all the triples of p, x, y:

((x=(0, y2, p)) ^ (y-(0, y2+1, p))) v ((x=(y1, y2, p)) ^
((y=(y1+1, y2, p))) ^ ((x=(xi

max, y2, p)) ^ (p=pi) ^
(y=(g, 0, p))), if p from Pdem;

((x=((y1, 0, qj))  ̂(y1>0)) ^ (((y=(y1-y2, y2, p j)) ^
Rp(x ,y)= ((y1-y2)>0)) v (y=(y1, 1, r))), if p from Qy1jfall,

a subset of  Qfall
(((x=(y1, 0, r)) ^ (y=(y1, 1, r))) v ((x=(y1, 1, r)) ^
(y=(y1, 0, qj)) ^ (y1>0) ^ (qj c Qdem ), if p from Preserve;

F (false), if p from Qdem.

Note that here the reachability relation Rp is asymmetric, i.e., there exist p, x, and y such 
that Rp(x, y)≠Rp(y, x). To specify the partial function ON(p), it is sufficient to write out its

values in the initial state So:
(0, 0, p), if p from Pdem;
(g, 0, pj), if p=qj from Qdem;

res
ON(p)= (y1, 0, r) if p from Py1, a subset of Preserve;

fall
(y1,0, qj) if p from Qy1j, a subset of Qfall.

Function v(p) for target elements p=qi is equal to the demanded power of separate power
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unit pi; for the elements pi, striving to reach targets, it is equal to the total power of all the
demands, and for elements p of power reserve and fall v(p) equals to vo, the quantum of power fall
(see above).

w i, if p=qi from Qdem;
|Qdem|

v(p)= ∑ w i, if p from Pdem;
 i=1

vo if p from Preserve U Pfall.

The functioning of the system can easily be described using formulas for the
TRANSITION operator.

S i , the initial state, corresponds to the state of the energy-producing system in the "zero
day" of planning period, while the target states

S t, the target states, correspond to the state of the system with the maximum total demanded
power of units being maintained. Thus, states from St can be described as states of the
energy-producing system by the end of the planning period, in which the WFF
ON(pi)=(g, 0, pi) are true for numbers i such that ∑v(qi) is maximum (qi from Qdem ).

T, the set of transitions, consists of the “moves” of the elements along the network.
Following are the meanings of some transitions (see Fig. 4):

 — TRANSITION(pi, x, (g, 0, pi)) with removal of the WFF ON(qi)=(g, 0, pi) means
completion of the maintenance of the unit pi.
— TRANSITION(pi, x, (1, y2, pi)) with addition of the WFF ON(pi)=(1, y2, pi)
means the unit pi being taken out for the maintenance work on the day y2.
— TRANSITION(pi, (0, y2, p i), (0, y2+1, pi)) with addition of the WFF ON(pi)=
(0, y2+1, pi) and removal of ON(pi)=(0, y2, p i ) means that on the day y2+1 unit pi has
not yet been taken out for maintenance in the given plan variant.

8.3. DETAILS OF MAINTENANCE PROBLEM

To clarify this problem let us return to the example depicted in Fig. 4 and consider it in
details. This is the maintenance planning problem for two units over a period of three days:
w1=5, w2=2;   h1=3, h2=2;   x1

max=x2
max=2;  Tmax=3;   f(1)=4; f(2)=5; f(3)=3.

(A reader should not be confused by the simplicity of the example shown in the Fig. 4. It is cited
here only for clarification of our approach. For the practical applications there were considered
hundreds and even thousands of power units, and different kinds of resources including those
which required some time to be delivered to the places of maintenance.)

From Fig. 4 it is seen that, for setting up the maintenance plan, the elements pi have to go
from the points (0, 0, pi) to the points (g, 0, pi). In particular, for element p2 to get through to the
point (g, 0, p2) along any of the paths

(0, 0, p2)—>(1, 0, p2)—>(2, 0, p2)—>(g, 0, p2)
 or

(0, 0, p2)—>(0, 1, p2)—>(1, 1, p2)—>(g, 0, p2),
 it is necessary to do away with the elements of the set (pyramid) Q12

fall at the point (1, 0, q2), as
well as the elements of the pyramids Q22

fall, Q23
fall at the points (2, 0, q2), (3, 0, q2). The

elements of these pyramids control the points of the path of the element p2 to the target. Obviously,
pyramids of elements from Qfall correspond to fall of power in the energy-producing system
during the time of maintenance of power units.

For liquidation of the elements from Qfall we have three sets (pyramids of discs) P1
res,

P2
res, P3

res at the points (1, 0, r), (2, 0, r) and (3, 0, r) corresponding to the power reserves in the
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system during each particular day. It is necessary to carry out a transition, i.e., to move an element
from P1

res to the point (1, 1, r), then move an element from Q12
fall to the same point, i. e., to

perform a "capture", then move the next element from P1
res, and so forth.

In the given example pyramids are placed at one-step distance from the points of exchange.
It means the instantaneous availability of resources in the given problem. For complex real-world
problems pyramids of resources have to be placed at several steps from the points of exchange
which means that resources delivery should start in advance, in several time intervals.

Returning to our example, if at the point (1, 1, r) it is possible to exchange all the elements
from Qfall, then the point (1, 0, p2) becomes traversable freely for the element p2. If this, however,
is not possible (as is in fact shown in Fig. 4), owing to the fact that three elements of
the pyramid P1

res were spent on removing the control from the point (1, 0, p1), i.e., on liquidating
Q11

fall, and if the remaining single element is not sufficient for destroying the two elements of
Q12

fall, the element p2 is forced to move to the point (0, 1, p2). Thus, on the first day of the
planning period, only one of the power units (p1, for example) can be taken out for maintenance
because of insufficiency of power reserve. The second unit p2 will be taken out on the second day
(displacement (0, 1, p2)—>(1, 1, p2)). Different versions of the maintenance plan are matched by
different variants of movement of elements from P along points from X.

Let us take a closer look at the geometrical structure of the maintenance model. Due to the
asymmetry of the relation Rp for this model (Section 5) function MAPx,p(y) is specified in
accordance with definition from the Section 5 as asymmetric function of distance. In particular,
from Fig. 4  MAP(0, 0, p2), p2(1, 0, p2)=1, MAP(0, 0, p1),p1(g, 0, p1)=3, etc.

9. Controlled grammars

In pattern recognition  problems, a linguistic approach was proposed [9-15] for
representation of hierarchic structured information contained by each pattern, i.e., for describing
patterns by means of simpler subpatterns. This approach brings to light an analogy between the the
hierarchic structure of patterns and the syntax of languages. The rules controlling the merging of
subpatterns into patterns are usually given by the so-called pattern description grammars, with the
power of such description being explained by the recursive nature of the grammars. Using similar
approach for generating of the hierarchy of formal languages, we make use of the theory of formal
grammars in the form developed in [7, 8, 16]. We begin with the definition of the class of
grammars to be used.

DEFINITION 9.1
A controlled grammar G is the following eight-tuple:

G=(VT,  VN,  VPR ,  E, H, Parm, L,  R ) ,
where

VT is the alphabet of terminal symbols;
VN is the alphabet of nonterminal symbols,  S  (from VN) is the start symbol;
VP R   is the alphabet of the first order predicate calculus PR:
VPR=Truth UCon UVar UFunc UPred U{symbols of logical operations},

where
Truth are truth symbols T and F (these are reserved symbols);
Con are constant symbols;
Var are variable symbols;
Func are functional symbols (Func =Fcon UFvar ). Functions have an attached
non-negative integer referred to as arity indicating the number of elements of the
domain mapped onto each element of the range. A term is either a constant,
variable or function expression. A function expression is given by a functional
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symbol of arity k, followed by k  terms, t1, t2,..., tk , enclosed in parentheses
and separated by commas;
Pred are predicate symbols. Predicates have an associated positive integer
referred to as arity  or “argument number” for the predicate. Predicates with the
same name but different arities are considered distinct. An atom is a predicate
constant of arity n, followed by n terms, t1, t2,..., tn, enclosed in parentheses
and separated by commas. The truth values, T and F, are also atoms.Well-
formed formulas (or WFF) are atoms and combinations of atoms using logical
operations;

E  is an enumerable set called the subject domain;
H  is an interpretation of PR calculus on the set E, i.e., a certain assignment of the

following form. Each
– constant from Con is assigned to an element of E;
– variable from Var is assigned to a nonempty subset of E; these are allowable
substitutions for that variable;
– predicate Q from Pred of arity n is assigned to a relation on the set E of arity n, i.e.,
to a mapping from En into {T, F};
– function f of arity k is assigned to a mapping h(f)from D into E, where D belongs to
Ek. If f is from Fvar, then D and the mapping h(f) vary in the process of derivation in
the grammar G.
Thus, the interpretation H allows us to calculate the value of any function (it lies in E)

and any predicate (F  or T ), if the values of all variables contained by them are specified.
Parm  is a mapping from VT UVN  in 2Var matching with each symbol of the alphabet VT

UVN  a set of formal parameters, with Parm(S)=Var;

L is a finite set called the set of labels;
R is a finite set of productions, i.e., a finite set of the following seven-tuples:

( l ,  Q,  A—>B, πk,  πn, FT, FF) .
Here

l  (from L) is the label of a production; the labels of different productions are
different, and subsequently sets of labels will be made identical to the sets
of productions labeled by them;

Q  is a WFF of the predicate calculus PR , the condition of applicability of
productions; Q contains only variables from Var which belong to
Parm(A);

A—>B   is an expression called the kernel of production, where
A    is from VN;
B   is from (VT U VN)* is a string in the alphabet of the grammar G;

πk   is a sequence of functional formulas corresponding to all formal parameters
of each entry of symbols from VT UVN into the strings A and B (kernel
actual parameters);

πn  is a sequence of functional formulas corresponding to all formal parameters
of each functional symbol from Fvar (non-kernel actual parameters);

FT   is a subset of L of labels of the productions permitted on the next step of
derivation if Q=T (“true”); it is called a permissible set in case of success;

FF  is a subset of L  of labels of the productions permitted on the next step of
derivation if Q=F(“false”); it is called a permissible set in case of failure.



16

Table 1
 A structure of typical controlled grammar

                                                                                                                            
  L    Q Kernel, πk πn FT  FF
                                                                                                       

   l i    Qi     A (  ,  ,  )  —> a(  ,  ,  )b(  ,  , )
                                                                                                       

V T = . . . V N = . . . V PR = . . .
E  is  . . . Parm:  . . .

A finite set of strings from VT* and formulas from πn , in which each formal parameter (for
every entry of a terminal symbol into a string) is attributed with a value from E and each symbol f
from Fvar is matched with a mapping h(f), serves as a derivation result.

Derivation in controlled grammar takes place as follows. A symbol S  serves as the start of
derivation, where its formal parameters are provided with initial mappings h(f) are specified for all
f from Fvar. In the role of the initial permissible set of productions we take the entire set L. To a
current string we apply each of the productions of the current permissible set, the symbol A for
which enters into the string. As a result of applying a production, a new string and a new
permissible set are formed. Later on derivation for each of the strings obtained from a given one
takes place independently.

 If none of the productions from permissible set can be applied, then derivation of the given
string is discontinued. If this string consists only of terminal symbols, then it goes into the set of
derivation results, otherwise it is discarded.

The application of a production takes place as follows. We choose the leftmost entry of the
symbol A in the string. We compute the value of the predicate Q. If Q=F, the FF becomes the
permissible set, and the application of the production is ended. If Q=T, then the symbol A is
replaced by the string B; we carry out computation of the values of all formulas from πk
corresponding to the parameters of the symbols, and the parameters assume new values thus
computed. New mappings h(f) (f from Fvar) are specified by means of formulas from πn; the
permissible set is furnished by FT, and application of the production is ended. (In the record of the
production the formulas from πn leaving h(f) unaltered are omitted.)

In constructions with which the controlled grammar is provided, it is easy to observe
analogies with the programming language SNOBOL-4.

DEFINITION 9.2
A language L[G] generated by the controlled grammar G is the union of all the

sets which are the derivation results in this grammar.

10. A Linguistic Geometry of Paths

Here, we define the lower-level language of the hierarchy of languages. It will serve as a
building block to create the upper-level languages. This language actually formalizes a notion of the
path between two points for the certain element of the System. An element might follow this path
to achieve the goal connected with the ending point.
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DEFINITION 10.1
A trajectory for an element p of P with the beginning at x of X and the end at the y  of X

(x≠y) with a length l is a following string of symbols with parameters, points of X:
to=a(x)a(x1)…a(xl),

where each successive point xi+1 is reachable from the previous point xi: Rp(xi, xi+1) holds for
i=0,1,…, l–1; element p stands at the point x: ON(p)=x. We denote tp(x, y, l) the set of trajectories

in which p, x, y, and l  are the same. P(to)={x, x1, ..., xl} is the set of parametric values of the
trajectory to.

Two trajectories of the element p  a(1)a(2)a(3)a(4)a(5) and a(1)a(6)a(7)a(8)a(9)a(5) are
shown in fig. 5.

DEFINITION 10.2
A shortest trajectory t of tp(x, y, l) is the trajectory of minimum length for the given

beginning x, end y and element p.
For example, in fig. 5, a trajectory a(1)a(2)a(3)a(4)a(5) is the shortest trajectory. Reasoning

informally, an analogy can be set up: the shortest trajectory is an analogous to a straight line
segment connecting two points in a plane. Let us consider an analogy to a k-element segmented
line connecting these points.

DEFINITION 10.3
An admissible trajectory of degree k is the trajectory which can be divided into k

shortest trajectories; more precisely there exists a subset {xi1, xi2, …, xik-1} of P(to),
i1<i2<…<ik-1, k≤l, such that corresponding substrings a(xo)…a(xi1),  a(xi1)…a(xi2), …,
a(xik-1)…a(xl) are the shortest trajectories.

1
2

5

p 3
4

6

7

8

9

Fig. 5. An interpretation of shortest and admissible trajectories.

The shortest and admissible trajectories of degree 2 play a special role in many problems.
Obviously, every shortest trajectory is an admissible trajectory at the same time, but of course,
converse statement is not true. There exist admissible trajectories, e.g., of degree 2, which are not
shortest. An example of such a trajectory a(1)a(6)a(7)a(8)a(9)a(5) is shown in fig. 5. As a rule,
elements of the System should move along the shortest paths. In case of an obstacle, the element
should move around this obstacle by tracing some intermediate point aside (e.g. point 7 in Fig. 5)
and going to and from this point to the end along the shortest trajectories. Thus, in this case, an
element should move along an admissible trajectory of degree 2.

DEFINITION 10.4
A Language of Trajectories LtH(S)  for the Complex System in a state S is the set of all

the shortest and admissible (degree 2) trajectories of the length less than H. This language also
includes empty trajectory e of the length 0.

Properties of the Complex System permit to define (in general form) and study formal
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grammars for generating the Language of Trajectories as a whole along with its subsets: shortest
and admissible (degree 2) trajectories.

11. Generation of trajectories

 Consider the following controlled grammar for the Complex System with symmetric relation
of reachability Rp:

Table 2. A grammar of shortest trajectories Gt( 1 )

                                                                                                                                            

 L Q   Kernel, πk  πn FT FF
                                                                                                                             

  1        Q1 S(x,y,l) –> A (x,y,l) two ø
                                                                                                       
 2i       Q2 A (x,y,l) –> a(x)A (nexti (x,l), y, f(l))     two  3
                                                                                                         
  3        Q3     A (x,y,l) –> a(y) ø ø
                                                                                                      

V T ={a}
V N ={S, A}
V PR

Pred ={Q1,Q2,Q3},
Q1(x, y, l) = (MAPx,p(y)=l)     (0 < l < n)
Q2(l) = (l ≥ 1)
Q3  = T

Var =  {x, y, l}
F =Fcon UFvar,
       Fcon={f ,next1,...,nextn}  (n=|X|),

f(l)=l-1,  D(f)=Z+\{0}
(nexti  is defined in fig. 5)

Fvar={xo,yo,lo,p}
E =Z+U X U P
Parm:  S –>Var,   A  –>Var,   a –>{x}
L= {1,3} U two,   two={21,22,...,2n}
At the beginning of derivation:

 x=xo, y=yo, l=lo,  xo from X, yo from X,  lo from Z+, p from P.
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   nexti  is defined as follows:

D(nexti)= X x Z+ x X2 x Z+ x P

SUM={v | v from X, MAPxo,p(v)+MAPyo,p(v)=lo},
STk(x)={v | v from X, MAPx,p(v)=k},
MOVEl(x) is an intersection of the following sets:

ST1(x), STlo-l+1(xo) and SUM.
If
   MOVEl(x)={m1, m2, ...,mr}≠ Ø
   then
   nexti(x, l)=mi  for i≤r  and
   nexti(x, l)=mr  for r<i≤n,
otherwise
   nexti(x, l)=x.

 MAP   (v) +  MAP   (v) =

MAP    (v) = k x

x
x

MAP      (v) = 1

next 
next 

y

x

x ,p
   0

y ,p
   0

l
  0

x ,p
   0

  1

  2

x    ,p
  k-1   k-1

   1

   0

0

   0

Fig. 6. Interpretation of the algorithm for nexti  for the grammar Gt
(1)

THEOREM 1
The shortest trajectories from the point x to the point y of the length lo for the element p on x (i.e.,
ON(p)=x) exist if and only if the distance of these points is equal lo:

MAPxo,p(yo)= lo ,  (11.1)
where lo<2n, n is the number of points in X. If the relation Rp is symmetric, i.e., for all x from X,
y from X and p from P Rp(x, y)=Rp(y, x), then all the shortest trajectories tp(xo, yo,  lo) can be
generated by the grammar Gt( 1 ) .
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Proof
We assume that to from tp(xo, yo, lo) exists and is shortest. We shall prove (11.1). The

proof is carried out by induction with respect to lo.
In the case of lo=1 the statement is easily verified.
We assume that for lo<m the statement is true.

Let lo=m and tm from tp(xo, yo, m) be the shortest. We shall prove that MAPxo,p(yo)=m. Let’s
consider the the shortened  trajectory tm-1 from tp(xo, xm-1, m-1), tm-1=a(xo)a(x1)...a(xm-1),
which is obtained from tm after discarding the last symbol. If tm from tp(xo, xm,  m) is the shortest
(xm=yo), then tm-1 is also shortest. But from the assumption it follows that MAPxo,p(xm-1)=m-1.
From definition of MAP (see Section 5) it follows that xm-1 belongs to

m-1 m-1
Mxo,p.  Since Rp(xm-1, yo) is true, yo belongs to (U Mjxo,p) U Mmxo,p.   If yo is from
m-1 j=1

 U Mjxo,p, then the trajectory tm  is not the shortest one, since there exists a trajectory t’ from
j=1

tp(xo, yo, j) of length j≤m-1. We have a contradiction. Thus, yo belongs to Mmxo,p, i.e.,
MAPxo,p(yo)=m.

Conversely, let (11.1) be true. Let’s show that there exists a trajectory belonging to tp(xo,
yo,  lo), and that it is the shortest trajectory.

The proof will be carried out by induction. For lo=1 the statement is obvious. Let it be true
for lo<m.

Let now lo=m and MAPxo,p(yo)=m. The shortest trajectory if exists can not be shorter then
m, otherwise there exists ko<m   such that MAPxo,p(yo)=ko (from the direct statement proved
above), and we have a contradiction.

Let us construct the shortest trajectory belonging to tp(xo, yo, m). By definition of MAP
there exists xm-1 from

m-1 m-1
Mxo,p such that Rp(xm-1, yo)=T. But from the fact that xm-1 belongs to Mxo,p, we have
MAPxo,p(xm-1)=m-1. Consequently, according to the induction hypothesis, there exists the
shortest trajectory a(xo)a(x1)...a(xm-1) of length m-1. In such a case the trajectory
a(xo)a(x1)...a(xm-1)a(yo) of length m will also be the shortest one.

To complete the proof of the theorem it remains for us to show that all trajectories
tp(xo, yo,  lo) are generated by the grammar  Gt

(1) from Table 2, if Rp is symmetric. This grammar,
in accordance with definition 9.1 of controlled grammars, belongs to the class of controlled
grammars. Note that that the set of functional letters Fvar  in it is a set of four zero-placed
functions p, xo, yo, lo, i.e., Gt

(1)=G(p, xo, yo, lo). It is obvious that each of the strings generated
by Gt

(1) is a trajectory from tp(xo, yo,  lo). Indeed, for each string a(xo)a(x1)...a(yo) thus
generated, the elements xi belong to STi(xo)=Mixo,p (see Fig. 6), consequently, this string is the
shortest trajectory.

To prove that all the shortest trajectories are generated by Gt
(1) let us conduct the following

preliminary discussion. As was already mentioned above, all substrings of the shortest trajectory
are the shortest trajectories with the beginning at xo and ending at xi (i=1, 2,..., lo). Taking into
account the symmetry of the relation Rp, all reversed substrings with the beginning at yo and
ending at xi (i=lo-1, lo-2,...,1, 0) will also be the shortest trajectories. Consequently, xi

lo-i
belongs to Myo,p. This means that for any shortest trajectory a(xo)a(x1)...a(yo) from tp(xo,yo,lo)
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i lo-i
 xi belongs to the intersection of Mxo,p and Myo,p, i.e., MAPxo,p(xi)=i and MAPyo,p(xi)=lo-i,
and, consequently,

MAPxo,p(xi)+MAPyo,p(xi)=lo.  (11.2)

Conversely, if for a certain x from X (11.2) takes place, then x necessarily enters into the
set P(ti) parametric values of at least one shortest trajectory ti from tp(xo, yo, lo). This follows
from the fact that MAPxo,p(x)≥0 and MAPyo,p(x)≥0, while their  sum is equal to lo. That is to
say, there exists j (0≤j≤lo), such that MAPxo,p(x)=j, MAPyo,p(x)=lo-j. Then there exist two
shortest trajectories t1 from tp(xo, x, j) and t2 from tp(yo, x, lo-j). The trajectory t3 from tp(x, yo,
lo-j) constructed of the same symbols as t2, but in the reversed order, will also be the shortest
trajectory. The concatenation of t1 and t2 gives the sought shortest trajectory containing x.

Thus, any element of the set X enters into the collection of parametric values UP(ti)
ti

for all the shortest trajectories ti from tp(xo, yo, lo) if and only if (11.2) is true. These arguments
lay a basis for the algorithm for calculating the function nexti(x, l) (Fig. 6).

Next we shall use induction again. Obviously, the grammar of trajectories generates the
first symbol a(xo) of all shortest trajectories from tp(xo, yo,  lo).  Assume that it generates the m
first symbols of any shortest shortest trajectory from tp(xo, yo,  lo). We shall show that it generates
also the (m+1)st symbol a(xm).

We have: MOVE(xm-1) is an intersection of ST1(xm-1), STm(xo) and SUM. Since tp(xo,
yo,  lo) are the shortest trajectories, xm belongs to STm(xo)=Mmxo,p. But xm also belongs to SUM,
because of (11.2), and xm belongs to ST1(xm-1)=M1xm-1,p since Rp(xm-1, xm)=T by definition of
trajectory. Thus, xm belongs to MOVE(xm-1), i.e., the (m+1)st symbol is generated by the
grammar Gt

(1).
The theorem is proved.

12. Generation of trajectories for the game of chess

K

g7

f6e6d6

f7e7
h7

h6

g4f4

c6

h5

e4

d5

h8

Fig. 7. Interpretation of the Language of Trajectories for the chess model.
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The trajectory in this model is furnished by a string of symbols with parameters, i.e., the
coordinates of the chessboard squares on which a piece must stand when moving from initial
square to the ending one.

Three examples of trajectories for the King are shown in Fig. 7. The trajectories
a(h8)a(g7)a(f6)a(e6)a(d6)a(c6) and a(h8)a(g7)a(f7)a(e7)a(d6)a(c6) are the shortest trajectories
from tKing(h8, c6, 5) of the length 5. The trajectory
a(h8)a(h7)a(h6)a(h5)a(g4)a(f4)a(e4)a(d5)a(c6)
is an admissible trajectory of degree 2, because it consists of two shortest trajectories
a(h8)a(h7)a(h6)a(h5)a(g4) and a(g4)a(f4)a(e4)a(d5)a(c6) tracing to the square g4 and from it. 

Due to symmetry of the relation Rp in this model, MAPx,p(y) specifies the metric on X, and
the theorem 1 of shortest trajectories holds (Section 11). The grammar Gt

(1) (Table 3) generates the
shortest trajectories for the movement of pieces on the empty chess board. Each trajectory is
generated as a list of stopping squares; remember that some chess pieces can “jump”, e.i., to cross
some squares without stop. While shortest trajectories for the Pawn, Knight, King can be of 6 or 7
moves length, for the long-range pieces these trajectories never exceed 2 moves, because such a
piece can reach every square on the empty chessboard in 1 or 2 moves.

13. Generation of trajectories for robot control problem

Let us consider the robot control problem (Section 7). We shall show the computation of a
planning path for the robot called K. Let us consider the derivation of the shortest trajectory from
h8 to the point c6 for the robot K. Values of MAPh8,K are shown in Fig. 3. Thus the distance from
h8 to c6 is equal to 5. Applying the grammar Gt(1) we have (symbol l—> means application of the
production with the label l):

S (h8, c6, 5) 1—> A(h8, c6, 5) 21—>a(h8)A(next1(h8, 5), c6, 5)
Thus we have to compute MOVE (see the definition of the function nexti from the grammar Gt

(1)).
First we have to determine set SUM, i.e., we need to know values of MAPh8,K and MAPc6,K
(shown in Fig. 8) on X. Adding these tables (Fig. 3 and 8) as matrices we can compute

SUM = {v | v from X, MAPh8, K(v)+MAPc6,K(v)=5}

2    2    2    2    2    3    4    5 

2    1    1    1    2    3    4    5

2    1    0    1    2    3    4    5

2    1    1    1    2    3    4    5

2    2    2    2    2    3    4    5

3    3    3    3    3    3    4    5

4    4    4    4    4    4    4    5

5    5    5    5    5    5    5    5

                        5    5    5    5 

                  5    5    5    5    

            5    5    5    5        

                  5    5            

Fig. 8. Values of MAPc6,K) Fig. 9. Points of X which belong to SUM

The next step is the computation of ST1(h8)={v | v from X, MAPh8,K(v)=1} which can be
found from the table in Fig. 3. The result is shown in Fig. 10. In order to complete computation of
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the set MOVE5(h8) we have to determine the following intersection:
ST1(h8),  ST5-5+1(h8)=ST1(h8)  and  SUM (see Fig. 11)

Fig. 10. The set of ST1(h8). Fig. 11. The set of SUM.

Consequently, MOVE5(h8)={g7, g8}; and next1(h8, 5)=g7, next2(h8, 5)=g8. Since the
number of different values of next is equal to 2 (here r=2, see definition of the function next) we
could branch at this step, i.e., apply productions 21 and 22 simultaneously, and continue both
derivations independently. It can be accomplished in parallel computing environment. Let us
proceed with the first derivation.

Fig. 12. The set of ST1(g7). Fig. 13. The set of ST2(h8).

a(h8)A(g7, c6, 4) 21—> a(h8)a(g7)A(next1(g7, 4), c6, 3)
We have to compute next1(g7, 4). As on the preceding step have to determine MOVE4(g7). In
order to do that we have to compute ST1(g7)={v | v from X, MAPg7,K(v)=1} and ST5-4+1(h8)
=ST2(h8)={v | v from X, MAPh8,K(v)=2}. The set of SUM is the same on all steps of the
derivation. Hence, MOVE4(g7) is the intersection of the sets shown in Fig. 11, 12, 13,
MOVE4(g7) = {f6, f7, f8}; and

 next1(g7, 4) = f6; next2(g7, 4) = f7; next3(g7, 4) = f8.
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Thus, the number of different values of the function next is equal to 3 (r=3), so the number of
continuations of derivation should be multiplied by 3. Let us proceed with the first one:

a(h8)a(g7)A(f6, c6, 3) 21—> ...
This way eventually we will derive one of the shortest trajectories for the robot K from h8 to c6:

a(h8)a(g7)a(f6)a(e5)a(d5)a(c6).

14. Generation of trajectories for scheduling problem

Following Sections 8.1-8.3 we can construct a Hierarchy of Languages for this problem.
Here we consider several examples from the Language of Trajectories. As an example of shortest
trajectory here we have

tp2((0, 0, p2), (g, 0, p2), 3)=a(0, 0, p2)a(1, 0, p2)a(2, 0, p2)a(g, 0, p2),
i.e., the unit p2 being taken out for maintenance on the first day and this maintenance was
completed on the second day. Another example:

  tpres((1, 0, r), (1, 0, q2), 2)=a(1, 0, r)a(1, 1, r)a(1, 0, q2),
The trajectory of the elements of power reserve, the pyramid P1

res, is targeted to liquidate the
elements of the pyramid Q11

fall.Of course, movement along this trajectory will not be included into
the optimal variant of the System: the opposite side (elements from Q11

fall) would not be waiting
for being captured on the point (1, 0, q2); after the

TRANSITION(pres, (1, 0, r), (1, 1, r))
one of the opposite elements qfall should move to the point (1, 1, r) —

 TRANSITION(qfall, (1, 0, q2), (1, 1, r)),
 and remove the element pres, starting the exchange.

The trajectory
tp2((0, 0, p2), (g, 0, p2), 4)=a(0, 0, p2)a(0, 1, p2)a(1, 1, p2)a(2, 1, p2)a(g, 0, p2)

can serve as an example of an admissible trajectory of degree 2. The movement along this
trajectory corresponds to the variant of the plan with unit p2 being taken out for maintenance on the
second day.

Here show a grammar of shortest trajectories which is the same as Gt
(1) (Table 2) except

function next.  In view of complexity we do not present here the definition of the function next for
the general case. Note only that here it does not depend on i. For example, in Fig. 4  function
nextuo,p(x, l)for all (x, l) from XxZ+ is given by the arrows of the network.

15. Geometrical constructions: obstacles and roundabout trajectories

 Consider the following controlled grammar for the Complex System with symmetric relation
of reachability Rp (Table 3, 4):

THEOREM 2
 All the admissible trajectories tp(xo, yo,  lo) of degree 2 from the point x to the point y of the length
lo for the element p on x can be generated by the grammar Gt( 2 ) .
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Table 3
 A grammar of shortest and admissible trajectories Gt( 2 ))

                                                                                                                                          
 L Q               Kernel, πk  πn FT FF
                                                                                                 ___________________                    
  1        Q1 S (x,y, l) –> A(x,y, l) two ø
                                                                                          _______________________________
 2i       Q2 A(x,y, l) –>A( x,  medi (x, y, l),  lmedi(x, y, l))     three three

                   A(medi (x, y, l),  y,  l–lmedi(x, y, l))
                                                                                          _______________________________
 3j      Q3 A(x,y, l) –> a(x)A(nextj (x,l), y, f(l))     three 4
                                                                                          _______________________________
  4        Q4     A(x,y, l) –> a(y)  three 5
                                                                           ______________________________________
  5        Q5     A(x,y, l) –> e three ø
                                                                           ______________________________________

VT ={a},
VN ={S , A},
VPR 

Pred ={Q1 ,Q2 ,Q3 ,Q4 ,Q5}
Q1(x, y, l) =  (MAPx,p(y) ≤ l < 2MAPx,p(y)) ^ (l < 2n)
Q2(x, y, l) =  (MAPx,p(y)≠l)
Q3(x, y, l) =  (MAPx,p(y)=l) ^ (l ≥ 1)
Q4(y) =  (y=yo)
Q5(y) =  (y≠yo)

Var =  {x, y, l};
Con = {xo,yo,lo,p};
Func= Fcon UFvar;
       Fcon={f, next1,.. . ,nextn,  med1,..., medn,

lmed1,..., lmedn}  (n=|X|),
f(l)=l-1,  D(f)=Z+ \{0}
functions nexti ,medi and lmedi  are defined in Table 4.

Fvar={xo,yo,lo,p}
E =Z+U X U P is the subject domain;
Parm:  S –>Var,   A  –>Var,    a –>{x};
 L= {1,4} U two U three,   two={21,22,...,2n}, three={31,32,...,3n}

At the beginning of derivation: x=xo, y=yo,  l=lo,  xo ∈ X, yo ∈ X,  lo ∈ Z+ , p ∈ P.
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Table 4
A definition of functions med,  lmed,  next

medi  is defined as follows:
D(medi)= X x X x Z+ x P
DOCK={v | v from X, MAPxo,p(v)+MAPyo,p(v)=l},
If
   DOCKl(x)={v1, v2, ...,vm}≠ Ø
   then
   medi(x, y, l)=vi  for 1≤ i ≤m and
   medi(x, y, l)=vm for m< i ≤n,
otherwise
   medi(x, y, l)=x.

lmedi  is defined as follows:
D(medi)= X x X x Z+ x P
lmedi(x, y, l)=MAPx,p(medi(x, y, l))

nexti  is defined as follows:
D(nexti)= X x Z+ x X2 x Z+ x P
SUM={v | v from X, MAPxo,p(v)+MAPyo,p(v)=lo},
STk(x)={v | v from X, MAPx,p(v)=k},
MOVEl(x) is an intersection of the following sets:

ST1(x), STlo-l+1(xo) and SUM.
If
   MOVEl(x)={m1, m2, ...,mr}≠ Ø
   then
   nexti(x, l)=mi  for i≤r  and
   nexti(x, l)=mr  for r<i≤n,
otherwise
   nexti(x, l)=x.

                                                                                                                                                                        

Proof
It is obvious that if lo is such that the WFF Q3  is true then all the shortest trajectories from

xo to yo are generated by productions with labels 1, 3j, and 4, 5 (Tables 3, 4).
It remains for us to consider the case where the WFF Q2  is true, i.e., the case of non-

shortest admissible trajectories of degree 2 and length lo. Let to=a(xo)a(x1)...a(yo) be a non-

shortest admissible trajectory of degree 2 and length lo. Then there exists xm∈P(to) such that
a(xo)...a(xm) and a(xm)...a(yo) are the shortest trajectories. According to Theorem 1,
MAPxo,p(xm)=m, and MAPxm,p(yo)=lo-m. Then in fact MAPyo,p(xm)=lo-m, hence

MAPxo,p(xm)+MAPyo,p(xm)=lo.

Thus, xm∈DOCK. Consequently, there exists vi from DOCK, vi=xm. Thus, one of the
productions with labels from the set two, e.g. 2i, is sure to be applied in the derivation process. It
means that the “attaching point” a(xm) of two shortest trajectories will be generated. These shortest
trajectories themselves, however, will be generated by application of the productions 1, 3j and 4, 5
in accordance with Theorem 1.

Conversely, let the grammar from Table 3 generates a certain string of symbols with
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parameters. From the definition of the function nexti(x, l) it follows that this string is a trajectory.
If in the derivation process we did not apply productions with labels from two, even once, then
from Theorem 1 it follows that the given trajectory is the shortest trajectory. We now assume that
these productions were applied. From Table 3 it follows that such an application was made once
only: a production with the label 2i can be used only after a production with label 1, which is used
first and once only; if set of two contains more than one element, derivation of several strings takes
place simultaneously. Thus, a single application of a production with the label 2i  generates the
following nonterminal symbols (Tables 3, 4):

A( x,  medi (x, y, l),  lmedi(x, y, l))A(medi (x, y, l),  y,  l—lmedi(x, y, l)),
where for vi=medi (x, y, l) we have MAPxo,p(vi)+MAPyo,p(vi)=l}. Consequently, a(vi) is an
“attaching point” of two shortest trajectories whose total length equals lo.

The theorem is proved.

16. Examples of trajectories in case of visible and invisible obstacles

For the implementation of the chess model considered in [4] for all pieces, except Queen,
admissible trajectories of degree 2 are generated. It means that for short-range pieces such
trajectories can reach 12-14 moves, while for long-range pieces they do not exceed 4 moves. Thus,
the implementation of the Hierarchy of Languages for this model is based on admissible trajectories
of degree 2 (except for the Queen). In order to utilize all the capabilities of this mobile piece we
have to generate admissible trajectories of degrees 2, 3 and 4. In practice, it does not mean the
increase of the length of the trajectories considered: Queen’s trajectories never exceed 4 moves.
The point is that all the admissible trajectories of the other long-range pieces of the length less or
equal 4 are admissible trajectories of degree 2 only. The generation of admissible trajectories of
higher degrees for the Queen was implemented by modification of the grammar Gt

(2) (Tables 3,4)
[4].
 In order to make our discussion about grammars generating admissible trajectories
transparent, let us consider in detail application of such a grammar to generating trajectories of the
elements of the Complex System in cases of visible and invisible obstacles. The difference between
these types of obstacles is as follows. Visible obstacles can be considered beforehand and
represented as restricted areas (Fig. 14). Invisible obstacles display themselves only during the
motion of elements along the trajectories, and after being encountered, require new (usually longer)
trajectories to be generated and examined.

7    6    5    4    3    2    1    0 

7    6    5    4    3    2    1    1

7    6    5    4    3    3    2    2

7    6    6    4    3    3    3    3

7    7    7    4    4    4    4    4

8    8    8    5    5    5    5    5

9    9    8    7    6    6    6    6

10    9    8    7    7    7    7    7

restricted
area

Fig. 14. Values of MAPh8,K

We shall apply this grammar for generating trajectories for the robot from the point h8 to c6
(Fig. 14). The motion space for this robot is the square table of 8x8 with the restricted area. Let us
consider the derivation of the shortest trajectory from h8 to the point c6 for the robot K. Values of
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MAPh8,K are shown in Fig. 14. The restricted area shown in Fig. 14 represents visible obstacles.
Thus, the distance from h8 to c6 is equal to 5. Applying the grammar Gt(2) we have
(symbol l—> means application of the production with the label l):

S (h8, c6, 5) 1—> A(h8, c6, 5) 31—>a(h8)A(next1(h8, 5), c6, 5)
Thus we have to compute MOVE (see definition of the function nexti from the grammar Gt(2)).
First we have to determine set SUM, i.e., we need to know values of MAPh8,K and MAPc6,K
(shown in Fig. 15) on X. Adding these tables (Fig. 14 and Fig. 15) as matrices we compute

SUM = {v | v from X, MAPh8, K(v)+MAPc6,K(v)=5}.
It is shown in Fig. 16.

2    2    2    2    2    3    4    5 

2    1    1    1    2                5

2    1    0                3    4    5

2    1    1                4    4    5

2    2    2                5    5    5

3    3    3                6    6    6

4    4    4    4    5    6    7    7

5    5    5    5    5    7    7    8

                        5    5    5    5 

                  5    5    5    5    

            5    5    5            

                  5    5            

Fig. 15. Values of MAPc6,K Fig. 16.Points of X which belong to SUM

The next step is the computation of ST1(h8)={v | v from X, MAPh8,K(v)=1} which can be found
from the Fig. 14. A result is the only point g8. In order to complete computation of the set
MOVE5(h8) we have to determine the following intersection:

ST1(h8),  ST5-5+1(h8)=ST1(h8)  and  SUM (Fig. 16)
Consequently, MOVE5(h8)={g8}; and next1(h8, 5)=g8. Since the number of different values of
next  is equal to 1 we can not branch here. Let us proceed with the derivation.

a(h8)A(g8, f8, 4) 21—> a(h8)a(g8)A(next1(g8, 4), c6, 3)
We have to compute next1(g8, 4). Obviously next1(g8, 4)=f8.

a(h8)a(g8)A(f8, c6, 3)21—> a(h8)a(g8)a(f8)A(next1(f8, 3), c6, 2)
As on the preceding step have to determine MOVE3(f8). In order to do that we have to compute
ST1(f8)={v | v from X, MAPf8,K(v)=1} (Fig. 17) and ST5-3+1(h8)=ST3(h8)={v | v from X,
MAPh8,K(v)=3} (Fig. 18).

Fig. 17. The set of ST1(f8) Fig. 18. The set of ST3(h8)

 The set of SUM is the same on all steps of the derivation. Hence, MOVE3(f8) is the intersection of
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the sets shown in Fig.16, 17, 18, MOVE4(f8) = {e7, e8}; and
 next1(f8, 3) = e7; next2(f8, 3) = e8.

Thus, the number of different values of the function next is equal to 2 (r=2), so the number of
continuations of derivation should be multiplied by 2; there exist two shortest trajectories. This
way, eventually, we will derive both of the shortest trajectories for the robot K from h8 to c6:

a(h8)a(g8)a(f8)a(e7)a(d7)a(c6)
and

a(h8)a(g8)a(f8)a(e8)a(d7)a(c6).
Let us assume that after examining these shortest paths robot found out that both of them are not
satisfactory because of invisible obstacles. So our robot is looking for different paths: they can be
longer trajectories, only. Applying the grammar Gt(2)  with l=6 we have

S (h8, c6, 6) 1—> A(h8, c6, 6)
Then we try to apply one of the productions 2i, check Q2=(MAPh8,K(c6)=5), i.e., Q2≠6. Hence

A(h8, c6, 6)21—>A(h8, medi(h8, c6, 6),  lmedi(h8, c6, 6))
                               A(medi(h8, c6, 6), c6, 6-lmedi(h8, c6, 6))

Thus we have to compute medi and lmedi  (the definitions of these functions are included into the
definition of the grammar Gt(2)). First we have to determine the set of DOCK, i.e., we have to
know values of MAPh8,K and MAPc6,K (shown in Fig. 14, 15) on X. Adding these tables as
matrices we compute

DOCK = {v | v from X, MAPh8, K(v)+MAPc6,K(v)=6}.
It is shown in Fig. 19. This set represents the attaching points of admissible trajectories

                  5    5            

6

6

6

66

 

                  5    5            

Fig. 19. The set of DOCK Fig. 20.Admissible trajectory
from h8 to c6 through h7

of degree 2. There are five attaching points: DOCK={c7, d8, f6, g6, h7}, and
med1(h8, c6, 6)=c7, med2(h8, c6, 6)=d8, med3(h8, c6, 6)=f6,

med4(h8, c6, 6)=g6, med5(h8, c6, 6)=h7.
Thus, the number of different values of the function med is equal to 5 (m=5), so the number of
continuations of derivation should be multiplied by 5; there exist five bundles of admissible
trajectories coming through points c7, d8, f6, g6, and h7. Some of the may be the same. Let us
continue the derivation of the trajectories coming through h7. According to definition of lmed and
MAPh8,K (Fig. 14):

lmed5(h8, c6, 6)= MAPh8,K(med5(h8, c6, 6))=1;
l–lmed5(h8, c6, 6)=5.

It means that shortest trajectories forming admissible trajectories from h8 to c6 through h7 are as
follows: the trajectories which come from h8 to h7 are of length 1, and from h7 to c6 — are of
length 5. Proceeding with the derivation we have:

A(h8, c6, 6)21—>A(h8, h7,  1)A(h7, c6, 5),
i.e., each of nonterminals A corresponds to the bundle of shortest trajectories coming to and from
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the attaching point h7. Next we apply one of the productions 3j:
A(h8, h7,  1)A(h7, c6, 5) 3j—> a(h8)A(nextj(h8, 1), h7, 0)A(h7, c6, 5)

Obviously, the number of different values of next is equal to 1 and next1(h8, 1) = h7:
a(h8)A  (h7, h7, 0)A(h7, c6, 5).

Then we try to apply production 31 again to nonterminal A  (h7, h7, 0), but fail because
Q3(h7, h7, 0)=F (l=1), we go to the production 4. Due to y=h7, i.e. y≠yo (yo=c6),  Q4=F, and
we fail applying this production. So according to the set ofFF we go to the production 5:

a(h8)A  (h7, h7, 0)A(h7, c6, 5) 5—> a(h8)A(h7, c6, 5)
Next we apply one of the productions 3j:

 a(h8)A(h7, c6, 6), c6, 5) 3j—> a(h8)a(h7)A(nextj(h7, c6, 5), c6, 4).
Thus, one of the shortest components is done. This is the trajectory a(h8)a(h7).
Obviously, function nextj(h7, c6, 4) yields only one value g6, and proceeding with derivation we
have:

a(h8)a(h7)A(next1(h7, c6, 4), c6, 5) = a(h8)a(h7)A(g6, c6, 4).
At the conclusion of derivation we will get the admissible trajectory (Fig. 20):

 a(h8)a(h7)a(g6)a(f6)a(e7)a(d7)a(c6).
This trajectory is quite different of the trajectories generated earlier. It might be free of invisible
obstacles. If it is not true, robot K should generate longer trajectories and try to move along them.

17. A discussion of results

This paper reports the results on investigation of geometrical properties of complex systems.
It explores properties of the first-level subsystems, paths of elements, so-called trajectories. These
results are considered as contribution to the Surface Linguistic Geometry. The impact of these
results on the applications was considered in details for the chess game, autonomous robot control
and maintenance scheduling problem.

The investigation resulted in definition of a distance function between two points of the
system as a “length of the shortest path between these points”. It is very interesting that distances
between the same two points are different for different elements of the system. It takes place
because usually paths for different elements are different, i.e., moving capabilities of different
robots as well as maintainability of different power units are different.

The distance measurement allowed us to build the general formal grammar generating all the
shortest paths between two points for the given element of the system, the shortest trajectories.
Moreover there was proved the theorem which gives necessary and sufficient conditions for
existence of a path (trajectory) between two points (for the given element); if such path does exist
the theorem shows the actual length of the shortest path and confirms that grammar Gt(1) generates
all the shortest paths. Analogous results were obtained in case of obstacles: visible and invisible. In
this case so-called “admissible trajectories of degree 2”, i.e.,  constructed of two shortest ones, can
be generated by the Gt

(2) grammar to go around the obstacles. The application of the Surface
Linguistic Geometry to the game of chess, robot control, and maintenance scheduling allowed for
efficient implementation of the Language of Trajectories in these models.

The same generating tools can be used to generate higher level subsystems, the networks of
paths, i.e., the Language of Trajectory Nets [20, 23, 24]. Even the Language of Translations [20,
24]  describing the process of search of a complex system can be generated by a similar type of
grammars. Consequently, the investigation of the control of the search for an optimal operation of
the complex system can be reduced to the investigation of properties of the specific formal
grammars.

Subsequent studies of geometrical properties of trajectory networks should allow us
formally and constructively to describe the adjustment of the whole hierarchy, i.e., the difference
between the representations of two states, while the system moves from one state to another one in
the process of the search. An efficient and constructive description of the hierarchy adjustment is
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very important for the design of efficient applications in different fields.

This research began in Moscow, USSR, continued at McGill University, Montreal,
Canada, and currently proceeds at the University of Colorado at Denver. The previous stages of
this research were mainly funded in the former USSR by the USSR National Committee for
Science and Technology and the USSR Department of Energy. In Canada funding was provided
jointly by McGill University, Montreal, and NSERC of Canada.
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